On energy/information cross-layer architectures

The importance of architectural principles in the design of engineering systems is well-recognized. This paper argues that the traditional separation between energy delivery and information delivery leads to suboptimal systems. To demonstrate this for wireline systems that may use DC powerline communication, a capacity-power-wiring cost function is defined. Signaling strategies that optimize this function deliver patterned energy: a commodity measured in bits and joules such that energy and information are intermixed. Cross-layer design leads to improved performance.

[1]  Lav R. Varshney,et al.  Unreliable and resource-constrained decoding , 2010 .

[2]  David A. Patterson,et al.  A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability , 2008 .

[3]  Daniel Palanker,et al.  A curvable silicon retinal implant , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[4]  Michael P. Frank,et al.  Reversibility for efficient computing , 1999 .

[5]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[6]  L R Varshney,et al.  Distributed inference networks with costly wires , 2010, Proceedings of the 2010 American Control Conference.

[7]  S.A. Mirtaheri,et al.  HEV (Hybrid Electric Vehicles) and the Wiring Reduction Methods , 2006, 2006 IEEE Vehicle Power and Propulsion Conference.

[8]  C.M. Jansky Collegiate Training for the Radio Engineering Field , 1926, Proceedings of the Institute of Radio Engineers.

[9]  Ken Mai,et al.  The future of wires , 2001, Proc. IEEE.

[10]  R.R. Harrison,et al.  A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System , 2006, IEEE Journal of Solid-State Circuits.

[11]  Christopher L. Magee,et al.  Engineering Systems: Meeting Human Needs in a Complex Technological World , 2011 .

[12]  Panganamala Ramana Kumar,et al.  A cautionary perspective on cross-layer design , 2005, IEEE Wireless Communications.

[13]  H. Harry Asada,et al.  Conductive Fabric Garment for a Cable-Free Body Area Network , 2007, IEEE Pervasive Computing.

[14]  Ting Zhu,et al.  eShare: a capacitor-driven energy storage and sharing network for long-term operation , 2010, SenSys '10.

[15]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[16]  Panganamala Ramana Kumar,et al.  Abstractions, Architecture, Mechanisms, and a Middleware for Networked Control , 2009, IEEE Transactions on Automatic Control.

[17]  Manish Bhardwaj,et al.  Communications in the observation limited regime , 2009 .

[18]  Lav R. Varshney,et al.  Transporting information and energy simultaneously , 2008, 2008 IEEE International Symposium on Information Theory.

[19]  H. Harry Asada,et al.  Wearable DC powerline communication network using conductive fabrics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Justin Dauwels NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS , 2005 .

[22]  Moises V. Ribeiro,et al.  Systems and Implementations , 2010 .

[23]  Anant Sahai,et al.  Shannon meets Tesla: Wireless information and power transfer , 2010, 2010 IEEE International Symposium on Information Theory.

[24]  Joel G. Smith,et al.  The Information Capacity of Amplitude- and Variance-Constrained Scalar Gaussian Channels , 1971, Inf. Control..

[25]  K. V. Meyenn,et al.  Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig , 1990 .