Quasi-linear sensitivity-based structural model updating using experimental transfer functions

Experimental validation of a new model updating method is presented for structural mass and stiffness estimation using vibration data. The method uses transfer functions for finite element model updating via a quasi-linear sensitivity equation of the structural response. Excitation frequencies are selected in the most sensitive ranges of transfer functions for robust updating of the structural parameters. In addition, noisy regions are omitted from measured transfer functions. A least squares algorithm with appropriate normalization is used for solving the overdetermined system of equations. The method is verified using experimental data from a one-bay, one-story aluminum frame. Fast and accurate prediction of stiffness and mass parameters using a subset of measured transfer functions in selected frequency ranges illustrated the success and robustness of the method in the presence of measurement and modeling errors.

[1]  Rongming Lin,et al.  Structural damage detection using measured FRF data , 1997 .

[2]  Alireza Rahai,et al.  Damage assessment of structure using incomplete measured mode shapes , 2007 .

[3]  Mehmet Imregun,et al.  Finite element model updating using frequency response function data: I. Theory and initial investigation , 1995 .

[4]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[5]  Mehmet Imregun,et al.  Finite element model updating using frequency response function data. II. Case study on a medium-size finite element model , 1995 .

[6]  Hoon Sohn,et al.  A Review of Structural Health Review of Structural Health Monitoring Literature 1996-2001. , 2002 .

[7]  Alireza Rahai,et al.  Structural finite element model updating using transfer function data , 2010 .

[8]  Paul Sas,et al.  Model updating based on forced vibration testing using numerical stable formulations , 1992 .

[9]  Nenad Bićanić,et al.  Damage identification in framed structures using natural frequencies , 1997 .

[10]  Rune Brincker,et al.  Proceedings of the 10th International Modal Analysis Conference , 1993 .

[11]  M. Imregun,et al.  A review of model updating techniques , 1991 .

[12]  J. H. Ong,et al.  Improving finite element models in the higher frequency range using modified frequency response function sensitivity method , 1993 .

[13]  C. M. Mota Soares,et al.  Structural damage identification in laminated structures using FRF data , 2005 .

[14]  Masoud Sanayei,et al.  PARAMETER ESTIMATION INCORPORATING MODAL DATA AND BOUNDARY CONDITIONS , 1999 .

[15]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[16]  Sophia Hassiotis,et al.  Identification of damage using natural frequencies and Markov parameters , 2000 .

[17]  Nicholas Haritos,et al.  Damage Identification in Plate-like Structures using Bending Moment Response Power Spectral Density , 2007 .

[18]  Alireza Rahai,et al.  Structural model updating using frequency response function and quasi-linear sensitivity equation , 2009 .

[19]  Vikas Arora,et al.  Comparative study of damped FE model updating methods , 2009 .

[20]  D. C. Zimmerman,et al.  Model Correlation and System Health Monitoring using Frequency Domain Measurements , 1995 .

[21]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[22]  H. Y. Hwang,et al.  Damage detection in structures using a few frequency response measurements , 2004 .

[23]  M. Imregun,et al.  Technical Article: practical articles in shock and vibration technology , 1991 .

[24]  T. K. Kundra,et al.  PREDICTION OF DYNAMIC CHARACTERISTICS USING UPDATED FINITE ELEMENT MODELS , 2002 .