Electrodeposition of single-metal nanoparticles on stable protein 1 membranes: application of plasmonic sensing by single nanoparticles.

[1]  I. Willner,et al.  Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. , 2011, Angewandte Chemie.

[2]  M. Spira,et al.  Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1. , 2011, Nano letters.

[3]  Taewook Kang,et al.  Innentitelbild: Simultaneous Optical Monitoring of the Overgrowth Modes of Individual Asymmetric Hybrid Nanoparticles (Angew. Chem. 20/2011) , 2011 .

[4]  E. Hey‐Hawkins,et al.  Back Cover: Carbaborane-Substituted 1,2-Diphosphetanes (Angew. Chem. Int. Ed. 20/2011) , 2011 .

[5]  Yang Li,et al.  Enhanced translocation of poly(dt)45 through an α-hemolysin nanopore by binding with antibody. , 2011, Chemical communications.

[6]  Masashi Kawasaki,et al.  Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. , 2010, Journal of the American Chemical Society.

[7]  D. Fermín,et al.  Tuning electrochemical rectification via quantum dot assemblies. , 2010, Journal of the American Chemical Society.

[8]  J. Collman,et al.  Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  Richard P. Van Duyne,et al.  Structural and optical characterization of single nanoparticles and single molecule SERS , 2010, NanoScience + Engineering.

[10]  Sara M. Butterfield,et al.  Wechselwirkungen zwischen amyloidogenen Proteinen und Membranen: Modellsysteme liefern mechanistische Einblicke , 2010 .

[11]  H. Lashuel,et al.  Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. , 2010, Angewandte Chemie.

[12]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[13]  D. Sasaki,et al.  Directed formation of lipid membrane microdomains as high affinity sites for His-tagged proteins. , 2009, Journal of the American Chemical Society.

[14]  C. Sönnichsen,et al.  Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. , 2009, Journal of the American Chemical Society.

[15]  Gustaaf Van Tendeloo,et al.  Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. , 2008, Journal of the American Chemical Society.

[16]  Shangjr Gwo,et al.  Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. , 2008, Journal of the American Chemical Society.

[17]  A. Koster,et al.  SP1 protein-based nanostructures and arrays. , 2008, Nano letters.

[18]  Rama Ranganathan,et al.  Signaling Across the Cell Membrane , 2007, Science.

[19]  D. Gillet,et al.  Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. , 2007, Analytical chemistry.

[20]  Ingo Köper,et al.  Functional Ion Channels in Tethered Bilayer Membranes—Implications for Biosensors , 2007, Chembiochem : a European journal of chemical biology.

[21]  G. Schatz,et al.  Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. , 2007, Journal of the American Chemical Society.

[22]  F. Menger,et al.  Sodium ion internalized within phospholipid membranes. , 2006, Journal of the American Chemical Society.

[23]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[24]  G. Favero,et al.  Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions. , 2005, Journal of the American Chemical Society.

[25]  Oded Shoseyov,et al.  The Structural Basis of the Thermostability of SP1, a Novel Plant (Populus tremula) Boiling Stable Protein* , 2004, Journal of Biological Chemistry.

[26]  Anando Devadoss,et al.  Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase. , 2004, Journal of the American Chemical Society.

[27]  C. Murphy,et al.  Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. , 2004, Journal of the American Chemical Society.

[28]  T. Germer,et al.  Influence of particle oxide coating on light scattering by submicron metal particles on silicon wafers , 2004 .

[29]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[30]  O. Dym,et al.  Crystallization and preliminary X-ray crystallographic analysis of SP1, a novel chaperone-like protein. , 2003, Acta crystallographica. Section D, Biological crystallography.

[31]  A. Altman,et al.  Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen1 , 2002, Plant Physiology.

[32]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[33]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[34]  B. Cornell,et al.  A biosensor that uses ion-channel switches , 1997, Nature.

[35]  C. Mol,et al.  Sequencing and modeling of anti-DNA immunoglobulin Fv domains. Comparison with crystal structures. , 1994, The Journal of biological chemistry.

[36]  T. Mosmann,et al.  Specificity of autoimmune monoclonal Fab fragments binding to single-stranded deoxyribonucleic acid. , 1982, Biochemistry.