Theory and Analysis of Laminated Composite Plates

Composite materials consist of two or more materials which together produce desirable properties that may not be achieved with any of the constituents alone. Fiber-reinforced composite materials, for example, consist of high strength and high modulus fibers in a matrix material. Reinforced steel bars embedded in concrete provide an example of fiber-reinforced composites. In these composites, fibers are the principal loadcarrying members, and the matrix material keeps the fibers together, acts as a load-transfer medium between fibers, and protects fibers from being exposed to the environment (e.g., moisture, humidity, etc.).

[1]  Chen Changqing,et al.  Finite element approach of vibration control using self-sensing piezoelectric actuators , 1996 .

[2]  J. B. Kennedy,et al.  Nonlinear Behavior of Symmetrically Laminated Plates , 1975 .

[3]  Haim Abramovich,et al.  A Self-Sensing Piezolaminated Actuator Model for Shells Using a First Order Shear Deformation Theory , 1995 .

[4]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[5]  John Anthony Mitchell,et al.  On refined nonlinear theories of laminated composite structures with piezoelectric laminae , 1995 .

[6]  J. N. Reddy,et al.  A penalty plate‐bending element for the analysis of laminated anisotropic composite plates , 1980 .

[7]  L. Levinson Electronic Ceramics: Properties: Devices, and Applications , 1987 .

[8]  John Anthony Mitchell,et al.  A refined hybrid plate theory for composite laminates with piezoelectric laminae , 1995 .

[9]  Harry F. Tiersten,et al.  Electroelastic equations for electroded thin plates subject to large driving voltages , 1993 .

[10]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[11]  Anne-Christine Hladky-Hennion,et al.  Finite element modeling of active periodic structures: Application to 1–3 piezocompositesa) , 1993 .

[12]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified , 1994 .

[13]  Kenji Uchino,et al.  ELECTROSTRICTIVE ACTUATORS: MATERIALS AND APPLICATIONS. , 1986 .

[14]  J. Reddy,et al.  Nonlinear analysis of composite laminates using a generalized laminated plate theory , 1990 .

[15]  D. H. Robbins,et al.  Analysis of piezoelectrically actuated beams using a layer-wise displacement theory , 1991 .

[16]  J. Kennedy,et al.  Nonlinear Analysis of Unsymmetrically Laminated Plates , 1975 .

[17]  A. Suleman,et al.  A Simple Finite Element Formulation for a Laminated Composite Plate with Piezoelectric Layers , 1995 .

[18]  H. F. Tiersten,et al.  Nonlinear electroelastic equations for small fields superposed on a bias , 1973 .

[19]  J. N. Reddy,et al.  Geometrically nonlinear transient analysis of laminated composite plates , 1983 .

[20]  J. H. Starnes,et al.  Postbuckling and failure characteristics of selected flat rectangular graphite-epoxy plates loaded in compression , 1981 .

[21]  R. J. Knops,et al.  TWO-DIMENSIONAL ELECTROSTRICTION , 1963 .

[22]  Sadayuki Takahashi,et al.  Multilayer Piezo-Ceramic Actuators and Their Applications , 1993 .

[23]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[24]  H. F. Tiersten,et al.  On the nonlinear equations of thermo-electroelasticity , 1971 .

[25]  R. Toupin The Elastic Dielectric , 1956 .

[26]  J. Reddy An introduction to the finite element method , 1989 .

[27]  Robert E. Newnham,et al.  Ferroelectric Sensors and Actuators: Smart Ceramics , 1993 .

[28]  Andrew P. Ritter,et al.  Designing Cofired Multilayer Electrostrictive Actuators for Reliability , 1989 .

[29]  J. N. Reddy,et al.  Analysis of laminated composite shells using a degenerated 3‐D element , 1984 .

[30]  W. Hwang,et al.  Finite Element Modeling of Piezoelectric Sensors and Actuators , 1993 .

[31]  J. N. Reddy,et al.  Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression , 1992 .

[32]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. I. Voltages Specified , 1994 .

[33]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[34]  Francis C. Moon,et al.  Laminated piezopolymer plates for torsion and bending sensors and actuators , 1989 .

[35]  Robert E. Newnham,et al.  The effect of electric field on mechanical strain and stress in flawed electroceramics , 1988 .

[36]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  Horn-Sen Tzou,et al.  Intelligent Structural Systems , 1992 .

[38]  J. Hossack,et al.  Finite-element analysis of 1-3 composite transducers , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  D. F. Nelson,et al.  Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals , 1978 .

[40]  J. Z. Zhu,et al.  The finite element method , 1977 .

[41]  C. K. Lee Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships , 1990 .

[42]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[43]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[44]  Nancy R. Sottos,et al.  Micromechanical behavior of 1-3 piezocomposites , 1993, Smart Structures.

[45]  Stephen W. Tsai,et al.  A Survey of Macroscopic Failure Criteria for Composite Materials , 1984 .

[46]  Horn-Sen Tzou,et al.  Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls , 1989 .

[47]  S. A. Ambartsumyan,et al.  Theory of anisotropic shells , 1964 .

[48]  C. Sun,et al.  Analysis of asymmetric composite laminates , 1988 .

[49]  Zhigang Suo,et al.  Cracking in ceramic actuators caused by electrostriction , 1994 .