Eccentric black hole-neutron star mergers: effects of black hole spin and equation of state

There is a high level of interest in black hole-neutron star binaries, not only because their mergers may be detected by gravitational wave observatories in the coming years, but also because of the possibility that they could explain a class of short duration gamma-ray bursts. We study black hole-neutron star mergers that occur with high eccentricity as may arise from dynamical capture in dense stellar regions such as nuclear or globular clusters. We perform general relativistic simulations of binaries with a range of impact parameters, three different initial black hole spins (zero, aligned and anti-aligned with the orbital angular momentum), and neutron stars with three different equations of state. We find a rich diversity across these parameters in the resulting gravitational wave signals and matter dynamics, which should also be reflected in the consequent electromagnetic emission. Before tidal disruption, the gravitational wave emission is significantly larger than perturbative predictions suggest for periapsis distances close to effective innermost stable separations, exhibiting features reflecting the zoom-whirl dynamics of the orbit there. Guided by the simulations, we develop a simple model for the change in orbital parameters of the binary during close encounters. Depending upon the initial parameters of the system, we find that mass transfer during non-merging close encounters can range from essentially zero to a sizable fraction of the initial neutron star mass. The same holds for the amount of material outside the black hole post-merger, and in some cases roughly half of this material is estimated to be unbound. We also see that non-merging close encounters generically excite large oscillations in the neutron star that are qualitatively consistent with f-modes.

[1]  S. Teukolsky,et al.  Black Hole-Neutron Star Mergers for 10 Solar Mass Black Holes , 2012 .

[2]  Z. Etienne,et al.  General relativistic simulations of black-hole-neutron-star mergers: Effects of magnetic fields , 2011, 1112.0568.

[3]  S. Bernuzzi,et al.  Eccentric binary neutron star mergers , 2011, 1109.5128.

[4]  B. Kocsis,et al.  Repeated bursts from relativistic scattering of compact objects in galactic nuclei , 2011, 1109.4170.

[5]  Masaru Shibata,et al.  Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model , 2011, 1109.3402.

[6]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[7]  Masaru Shibata,et al.  Extracting Equation of State Parameters from Black Hole-Neutron Star Mergers , 2011 .

[8]  Masaru Shibata,et al.  Coalescence of Black Hole-Neutron Star Binaries , 2011, Living reviews in relativity.

[9]  W. Domainko Finding short GRB remnants in globular clusters: the VHE gamma-ray source in Terzan 5 , 2011, 1106.4397.

[10]  B. Stephens,et al.  ECCENTRIC BLACK-HOLE–NEUTRON-STAR MERGERS , 2011, 1105.3175.

[11]  F. Ohme,et al.  Will black hole-neutron star binary inspirals tell us about the neutron star equation of state? , 2011, 1103.3526.

[12]  U. Maryland,et al.  THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE , 2011, 1102.1500.

[13]  N. Gehrels,et al.  HETEROGENEITY IN SHORT GAMMA-RAY BURSTS , 2011, 1101.1648.

[14]  Melvyn B. Davies,et al.  Implications for the origin of short gamma-ray bursts from their observed positions around their host galaxies , 2011, 1101.1088.

[15]  T. Thompson ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.

[16]  Lawrence E. Kidder,et al.  Black hole-neutron star mergers: Effects of the orientation of the black hole spin , 2010, 1007.4203.

[17]  J. Lattimer,et al.  What a Two Solar Mass Neutron Star Really Means , 2010, 1012.3208.

[18]  M. Shibata,et al.  Gravitational waves from spinning black hole-neutron star binaries , 2010, 1108.1189.

[19]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[20]  S. Ransom,et al.  Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.

[21]  J. Gair,et al.  Gravitational wave energy spectrum of a parabolic encounter , 2010, 1010.3865.

[22]  M. Shibata,et al.  Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state , 2010, 1008.1460.

[23]  E. Berger,et al.  A SHORT GAMMA-RAY BURST “NO-HOST” PROBLEM? INVESTIGATING LARGE PROGENITOR OFFSETS FOR SHORT GRBs WITH OPTICAL AFTERGLOWS , 2010, 1007.0003.

[24]  W. Kastaun,et al.  Saturation amplitude of the f-mode instability , 2010, 1006.3885.

[25]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[26]  L. Lehner,et al.  Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback. , 2010, Physical review letters.

[27]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[28]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[29]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[30]  William H. Lee,et al.  SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING , 2009, 0909.2884.

[31]  Frans Pretorius,et al.  Ultrarelativistic particle collisions. , 2009, Physical review letters.

[32]  Christian D. Ott,et al.  Equation of state effects in black hole–neutron star mergers , 2009, 0912.3528.

[33]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[34]  B. Szilágyi,et al.  Improved gauge driver for the generalized harmonic Einstein system , 2009, 0904.4873.

[35]  Masaru Shibata,et al.  Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.

[36]  Z. Etienne,et al.  General relativistic simulations of black-hole-neutron-star mergers: Effects of black-hole spin , 2008, 0812.2245.

[37]  L. Stella,et al.  Short γ-ray bursts and gravitational waves from dynamically formed merging binaries , 2008, 0811.0684.

[38]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[39]  M. Colpi,et al.  Short Gamma‐ray bursts: a bimodal origin? , 2007, 0710.3099.

[40]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[41]  F. Pretorius,et al.  Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.

[42]  M. Shibata,et al.  Merger of black hole-neutron star binaries : Nonspinning black hole case , 2006, gr-qc/0612142.

[43]  L. Rezzolla,et al.  Numerical evolutions of a black hole-neutron star system in full general relativity: Head-on collision , 2006, gr-qc/0606104.

[44]  D. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.

[45]  S. McMillan,et al.  Short gamma-ray bursts from binary neutron star mergers in globular clusters , 2005, astro-ph/0512654.

[46]  P. Podsiadlowski,et al.  The spin period–eccentricity relation of double neutron stars: evidence for weak supernova kicks? , 2005, astro-ph/0507628.

[47]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[48]  William H. Lee,et al.  A Compact Binary Merger Model for the Short, Hard GRB 050509b , 2005, astro-ph/0506104.

[49]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[50]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[51]  F. Pretorius Numerical relativity using a generalized harmonic decomposition , 2004, gr-qc/0407110.

[52]  Nick Kaiser,et al.  Pan-STARRS: a wide-field optical survey telescope array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[53]  S. Shapiro,et al.  Black Hole Spin Evolution , 2003, astro-ph/0310886.

[54]  N. Cornish,et al.  Lyapunov timescales and black hole binaries , 2003, gr-qc/0304056.

[55]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[56]  D. Kennefick,et al.  Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.

[57]  D. Garfinkle Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[58]  N. Andersson,et al.  The inverse problem for pulsating neutron stars: a ‘fingerprint analysis’ for the supranuclear equation of state , 1999, gr-qc/9901072.

[59]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[60]  T. Piran,et al.  Coalescing Neutron Stars: A Solution to the R-Process Problem? , 1998, astro-ph/9804332.

[61]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[62]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[63]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[64]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[65]  Stuart Louis Shapiro,et al.  The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation , 1987 .

[66]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[67]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[68]  M. Turner Gravitational radiation from point-masses in unbound orbits: Newtonian results. , 1977 .

[69]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[70]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[71]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .