THE PANCHROMATIC VIEW OF THE MAGELLANIC CLOUDS FROM CLASSICAL CEPHEIDS. I. DISTANCE, REDDENING, AND GEOMETRY OF THE LARGE MAGELLANIC CLOUD DISK

We present a detailed investigation of the Large Magellanic Cloud (LMC) disk using classical Cepheids. Our analysis is based on optical (I,V; OGLE-IV), near-infrared (NIR: J,H,Ks) and mid-infrared (MIR: w1; WISE) mean magnitudes. By adopting new templates to estimate the NIR mean magnitudes from single-epoch measurements, we build the currently most accurate, largest and homogeneous multi-band dataset of LMC Cepheids. We determine Cepheid individual distances using optical and NIR Period-Wesenheit relations (PWRs), to measure the geometry of the LMC disk and its viewing angles. Cepheid distances based on optical PWRs are precise at 3%, but accurate to 7, while the ones based on NIR PWRs are more accurate (to 3%), but less precise (2%-15%), given the higher photometric error on the observed magnitudes. We found an inclination i=25.05 $\pm$ 0.02 (stat.) $\pm$ 0.55 (syst.) deg, and a position angle of the lines of nodes P.A.=150.76 $\pm$ 0.02(stat.) $\pm$ 0.07(syst.) deg. These values agree well with estimates based either on young (Red Supergiants) or on intermediate-age (Asymptotic Giant Branch, Red Clump) stellar tracers, but they significantly differ from evaluations based on old (RR Lyrae) stellar tracers. This indicates that young/intermediate and old stellar populations have different spatial distributions. Finally, by using the reddening-law fitting approach, we provide a reddening map of the LMC disk which is ten times more accurate and two times larger than similar maps in the literature. We also found an LMC true distance modulus of $\mu_{0,LMC}=18.48 \pm 0.10$ (stat. and syst.) mag, in excellent agreement with the currently most accurate measurement (Pietrzynski et al. 2013).

[1]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[2]  M. Weinberg,et al.  Structure of the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003204.

[3]  European Southern Observatory,et al.  ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL–NIR PERIOD–WESENHEIT RELATIONS , 2012, 1212.4376.

[4]  A. Jacyszyn-Dobrzeniecka OGLE-ing the Magellanic System: Three-Dimensional Structure , 2016, Proceedings of the International Astronomical Union.

[5]  A. Drake,et al.  Geometry of the Large Magellanic Cloud Disk: Results from MACHO and the Two Micron All Sky Survey , 2004 .

[6]  R. Marel Magellanic Cloud Structure from Near-Infrared Surveys. II. Star Count Maps and the Intrinsic Elongation of the Large Magellanic Cloud , 2001, astro-ph/0105340.

[7]  W. Freedman,et al.  Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2007 .

[8]  C. R. James,et al.  The Carina Project. IV. Radial Velocity Distribution , 2011, 1102.3038.

[9]  A. Subramaniam,et al.  H I Kinematics of the Large Magellanic Cloud revisited : Evidence of possible infall and outflow , 2014, 1410.6650.

[10]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[11]  G. Fiorentino,et al.  Cepheid theoretical models and observations in HST/WFC3 filters: the effect on the Hubble constant H0 , 2013, 1306.6276.

[12]  G. Fiorentino,et al.  Cepheid Pulsation Models at Varying Metallicity and ΔY/ΔZ , 2005 .

[13]  K. Ulaczyk,et al.  The OGLE Collection of Variable Stars. Classical Cepheids in the Magellanic System , 2016, 1601.01318.

[14]  Giuseppe Bono,et al.  Classical Cepheid Pulsation Models. I. Physical Structure , 1999 .

[15]  K. Bekki,et al.  THE TIDAL ORIGIN OF THE MAGELLANIC STREAM AND THE POSSIBILITY OF A STELLAR COUNTERPART , 2011, 1112.6191.

[16]  Tokyo,et al.  New NIR light-curve templates for classical Cepheids , 2014, 1410.5460.

[17]  W. Gieren,et al.  Mean JHK Magnitudes of Fundamental-Mode Cepheids from Single-Epoch Observations , 2005, astro-ph/0503598.

[18]  P. Stetson,et al.  Surface Brightness and Stellar Populations at the Outer Edge of the Large Magellanic Cloud: No Stellar Halo Yet , 2004, astro-ph/0409023.

[19]  K. Olsen,et al.  A Population of Accreted SMC Stars in the LMC , 2011, 1106.0044.

[20]  Joana M. Oliveira,et al.  The VMC survey - IV. The LMC star formation history and disk geometry from four VMC tiles , 2011, 1110.5852.

[21]  N. Nardetto,et al.  Calibrating the Cepheid Period-Luminosity relation from the infrared surface brightness technique II. The effect of metallicity, and the distance to the LMC , 2011, 1109.2016.

[22]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[23]  J. B. Marquette,et al.  The VMC survey - V. First results for classical Cepheids , 2012, 1204.2273.

[24]  R. Carrera,et al.  METALLICITIES, AGE–METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD , 2011, 1106.3418.

[25]  M. Dopita,et al.  An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud , 1998 .

[26]  Wendy L. Freedman,et al.  A NEW CEPHEID DISTANCE MEASUREMENT AND METHOD FOR NGC 6822 , 2014, 1409.6830.

[27]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[28]  M. Nonino,et al.  The Carina Project. II. Stellar Populations , 2003, astro-ph/0303493.

[29]  M. McCall,et al.  On Determining Extinction from Reddening , 2004 .

[30]  Kenneth C. Freeman,et al.  Structure and dynamics of barred spiral galaxies, in particular of the Magellanic type , 1972 .

[31]  Bangalore,et al.  Structure of the Large Magellanic Cloud from the Near Infrared magnitudes of Red Clump stars , 2013, 1301.7538.

[32]  S. Kanbur,et al.  The detailed forms of the LMC Cepheid PL and PLC relations , 2007, 0706.1762.

[33]  C. M. Bidin,et al.  RECENT STAR FORMATION IN THE LEADING ARM OF THE MAGELLANIC STREAM , 2014, 1403.0517.

[34]  M. Cioni,et al.  Magellanic Cloud Structure from Near-Infrared Surveys. I. The Viewing Angles of the Large Magellanic Cloud , 2001, astro-ph/0105339.

[35]  S. Kanbur,et al.  THEORETICAL CEPHEID PERIOD–LUMINOSITY AND PERIOD–COLOR RELATIONS IN SPITZER IRAC BANDS , 2011, 1111.1791.

[36]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[37]  D. Bersier,et al.  A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.

[38]  Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the Large Magellanic Cloud , 1997, astro-ph/9710161.

[39]  M. Marconi,et al.  Classical Cepheid Pulsation Models. III. The Predictable Scenario , 1999, astro-ph/9908014.

[40]  Three dimensional maps of the Magellanic Clouds using RR~Lyrae stars and Cepheids - I. The Large Magellanic Cloud , 2012, 1207.5791.

[41]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[42]  D. Kato The IRSF Magellanic Clouds Point Source Catalog , 2007 .

[43]  E. Grebel,et al.  Hubble Tarantula Treasury Project – IV. The extinction law , 2015, 1510.08436.

[44]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[45]  Wendy L. Freedman,et al.  New Cepheid distances to nearby galaxies based on BVRI CCD photometry. III: NGC 300 , 1988 .

[46]  M. Marconi,et al.  Theoretical Models for Classical Cepheids. II. Period-Luminosity, Period-Color, and Period-Luminosity-Color Relations , 1998, astro-ph/9809127.

[47]  L. Hernquist,et al.  The role of dwarf galaxy interactions in shaping the Magellanic System and implications for Magellanic Irregulars , 2012, 1201.1299.

[48]  K. Bekki,et al.  Constraining the orbital history of the Magellanic Clouds: a new bound scenario suggested by the tidal origin of the Magellanic Stream , 2011, 1101.2500.

[49]  Gepi,et al.  The Magellanic System: Stars, Gas, and Galaxies , 2008, Proceedings of the International Astronomical Union.

[50]  S. Kanbur,et al.  LARGE MAGELLANIC CLOUD NEAR-INFRARED SYNOPTIC SURVEY. I. CEPHEID VARIABLES AND THE CALIBRATION OF THE LEAVITT LAW , 2014, 1412.1511.

[51]  B. Pilecki,et al.  THE ECLIPSING BINARY CEPHEID OGLE-LMC-CEP-0227 IN THE LARGE MAGELLANIC CLOUD: PULSATION MODELING OF LIGHT AND RADIAL VELOCITY CURVES , 2013, 1304.0860.

[52]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[53]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[54]  Harinder P. Singh,et al.  Chemical and structural analysis of the Large Magellanic Cloud using the fundamental mode RR Lyrae stars , 2013, 1312.3762.

[55]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[56]  B. Madore,et al.  New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II, The Local Group galaxy M33 , 1991 .

[57]  M. Nonino,et al.  The Carina Project - VIII. The α-element abundances , 2015, 1505.06597.

[58]  E. Grebel,et al.  NEW OPTICAL REDDENING MAPS OF THE LARGE AND SMALL MAGELLANIC CLOUDS , 2011, 1104.2325.

[59]  Armin Rest,et al.  FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS , 2010, 1008.3727.

[60]  G. Bono,et al.  GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS , 2009, 0911.2470.

[61]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[62]  Kinematic Evidence for an Old Stellar Halo in the Large Magellanic Cloud , 2003, Science.

[63]  B. Madore,et al.  BVRI photometry of extragalactic cepheids and new insights for the distance scale , 1985 .

[64]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[65]  N. Kallivayalil,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. II. THE LARGE MAGELLANIC CLOUD ROTATION FIELD IN THREE DIMENSIONS , 2013, 1305.4641.