5’isomiR-183-5p|+2 elicits tumor suppressor activity in a negative feedback loop with E2F1

[1]  R. P. Vivek-Ananth,et al.  Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells , 2021, Nature Communications.

[2]  Ö. Sahin,et al.  Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits , 2021, BMC Cancer.

[3]  L. Feuerbach,et al.  On the impact of batch effect correction in TCGA isomiR expression data , 2021, NAR cancer.

[4]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[5]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[6]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[7]  C. E. Condrat,et al.  miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis , 2020, Cells.

[8]  S. Tehrani,et al.  MicroRNAs in breast cancer: Roles, functions, and mechanism of actions , 2019, Journal of cellular physiology.

[9]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[10]  Yasset Perez-Riverol,et al.  The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics , 2019, Nucleic Acids Res..

[11]  A. Jemal,et al.  Cancer statistics, 2019 , 2019, CA: a cancer journal for clinicians.

[12]  K. Hunt,et al.  The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer , 2018, Breast Cancer Research.

[13]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[14]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[15]  Yuan Yuan,et al.  miR-183 inhibits autophagy and apoptosis in gastric cancer cells by targeting ultraviolet radiation resistance-associated gene. , 2018, International journal of molecular medicine.

[16]  M. Hudson Human , 2018, Critical Theory and the Classical World.

[17]  Libing Song,et al.  ANP32E induces tumorigenesis of triple‐negative breast cancer cells by upregulating E2F1 , 2018, Molecular oncology.

[18]  H. Abe,et al.  Highly sensitive and specific Alu-based quantification of human cells among rodent cells , 2017, Scientific Reports.

[19]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[20]  D. Cohen,et al.  Publisher's Note , 2017, Neuroscience & Biobehavioral Reviews.

[21]  H. Seitz,et al.  microRNA target prediction programs predict many false positives , 2017, Genome research.

[22]  I. Riquelme,et al.  Tools for Sequence-Based miRNA Target Prediction: What to Choose? , 2016, International journal of molecular sciences.

[23]  Gregory J. Goodall,et al.  A network-biology perspective of microRNA function and dysfunction in cancer , 2016, Nature Reviews Genetics.

[24]  S. Wiemann,et al.  The highly expressed 5’isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration , 2016, BMC Genomics.

[25]  Harold L. Moses,et al.  Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection , 2016, PloS one.

[26]  Yong Peng,et al.  The role of MicroRNAs in human cancer , 2016, Signal Transduction and Targeted Therapy.

[27]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[28]  Martin Eisenacher,et al.  PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets , 2015, Molecular & Cellular Proteomics.

[29]  Yi Jing,et al.  Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity , 2015, Nucleic acids research.

[30]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[31]  Isabella Castiglioni,et al.  MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer , 2015, Theranostics.

[32]  P. Ismail,et al.  MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. , 2015, Pharmacological research.

[33]  R. Gregory,et al.  MicroRNA biogenesis pathways in cancer , 2015, Nature Reviews Cancer.

[34]  I. Rigoutsos,et al.  IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies , 2014, Oncotarget.

[35]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[36]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[37]  J. Zuber,et al.  An optimized microRNA backbone for effective single-copy RNAi. , 2013, Cell reports.

[38]  Andrea Sottoriva,et al.  The shaping and functional consequences of the microRNA landscape in breast cancer , 2013, Nature.

[39]  R. Kalluri,et al.  miR-29b moulds the tumour microenvironment to repress metastasis , 2013, Nature Cell Biology.

[40]  M. Pontari,et al.  Mapping of pain phenotypes in female patients with bladder pain syndrome/interstitial cystitis and controls. , 2012, European urology.

[41]  Z. Werb,et al.  MicroRNAs play a big role in regulating ovarian cancer-associated fibroblasts and the tumor microenvironment. , 2012, Cancer discovery.

[42]  C. Bracken,et al.  IsomiRs--the overlooked repertoire in the dynamic microRNAome. , 2012, Trends in genetics : TIG.

[43]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[44]  M. Bushell,et al.  microRNAs in cancer management. , 2012, The Lancet. Oncology.

[45]  N. Bertos,et al.  Breast cancer - one term, many entities? , 2011, The Journal of clinical investigation.

[46]  Krishna R. Kalari,et al.  Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing , 2011, PloS one.

[47]  Subbaya Subramanian,et al.  MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. , 2010, Cancer research.

[48]  B. Davis-Dusenbery,et al.  MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways. , 2010, Genes & cancer.

[49]  M. Stack,et al.  Faculty Opinions recommendation of Targeting of integrin beta1 and kinesin 2alpha by microRNA 183. , 2010 .

[50]  Shih-Yin Tsai,et al.  Emerging roles of E2Fs in cancer: an exit from cell cycle control , 2009, Nature Reviews Cancer.

[51]  L. Montanaro,et al.  High prevalence of retinoblastoma protein loss in triple-negative breast cancers and its association with a good prognosis in patients treated with adjuvant chemotherapy. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[52]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[53]  Shu Zheng,et al.  MicroRNA‐183 regulates Ezrin expression in lung cancer cells , 2008, FEBS letters.

[54]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[55]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[56]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[57]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[58]  M. Hofker Faculty Opinions recommendation of PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. , 2003 .

[59]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[60]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[61]  J. Hartley,et al.  DNA cloning using in vitro site-specific recombination. , 2000, Genome research.

[62]  A. Kingsman,et al.  A transient three-plasmid expression system for the production of high titer retroviral vectors. , 1995, Nucleic acids research.

[63]  Stefka Tyanova,et al.  Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. , 2018, Methods in molecular biology.

[64]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[65]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[66]  U. Dhakad,et al.  Re: Dean A. Tripp, J. Curtis Nickel, Jennifer Wong, et al. Mapping of pain phenotypes in female patients with bladder pain syndrome/interstitial cystitis and controls. Eur Urol. In press. http://dx.doi.org/10.1016/j.eururo.2012.05.023. , 2012, European urology.

[67]  Michael R Hamblin,et al.  CA : A Cancer Journal for Clinicians , 2011 .

[68]  Anton J. Enright,et al.  MicroRNA Targets in Drosophila , 2003, Genome Biology.

[69]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[70]  TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative Exchange Exchange Statistical analysis of real-time PCR data Statistical analysis of real-time PCR data Statistical analysis of real-time PCR data , 2022 .