In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol

[1]  R. Schlögl,et al.  Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol , 2004 .

[2]  W. Cheng,et al.  Supported Cu Catalysts with Yttria-Doped Ceria for Steam Reforming of Methanol , 2003 .

[3]  M. Muhler,et al.  Deactivation of Supported Copper Catalysts for Methanol Synthesis , 2003 .

[4]  R. Caruso,et al.  Preparation and characterization of CuO–ZrO2 nanopowders , 2002 .

[5]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[6]  T. Ressler,et al.  Redox Behavior of Copper Oxide /Zinc Oxide Catalysts in the Steam Reforming of Methanol studied by in situ X-ray Diffraction and Absorption Spectroscopy , 2001 .

[7]  Lars J. Pettersson,et al.  Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications , 2001 .

[8]  E. Kemnitz,et al.  Oxidation Activity and 18O-Isotope Exchange Behavior of Cu-Stabilized Cubic Zirconia , 2001 .

[9]  C. Berndt,et al.  On the size-dependent phase transformation in nanoparticulate zirconia , 2000 .

[10]  T. Ressler,et al.  In Situ XAS and XRD Studies on the Formation of Mo Suboxides during Reduction of MoO3 , 2000 .

[11]  J. Wong,et al.  Quantitative speciation of Mn-bearing particulates emitted from Autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy , 2000 .

[12]  Julian R.H. Ross,et al.  Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts , 1999 .

[13]  Tie Yu,et al.  Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts , 1999 .

[14]  A. Chadwick,et al.  Oxygen Speciation in Nanophase MgO from Solid-State 17O NMR , 1998 .

[15]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.

[16]  Yasuaki Okamoto,et al.  Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO2 catalysts , 1994 .

[17]  Jens K. Nørskov,et al.  A New Procedure for Particle Size Determination by EXAFS Based on Molecular Dynamics Simulations , 1993 .

[18]  O. Chérifi,et al.  Supported copper catalysts in the synthesis of methanol: N2O-titrations , 1987 .

[19]  Miguel Ángel Asensio Sánchez,et al.  Oxygen vacancy model in strong metal-support interaction , 1987 .

[20]  K. C. Waugh,et al.  The activity and state of the copper surface in methanol synthesis catalysts , 1986 .

[21]  Richard G. Herman,et al.  Catalytic synthesis of methanol from COH2: IV. The effects of carbon dioxide , 1982 .

[22]  R. Herman,et al.  Optical properties and electronic interactions of microcrystalline copper/zinc oxide (Cu/ZnO) catalysts , 1979 .

[23]  Keiske Kaji,et al.  X-Ray Diffraction Procedures , 1975 .

[24]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[25]  R. Schlögl,et al.  Rationales Design von nanostrukturierten Kupfer-Zinkoxid-Katalysatoren für die Dampfreformierung von Methanol , 2004 .

[26]  R. Schlögl,et al.  Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis , 2001 .

[27]  Tsunehiro Tanaka,et al.  Zirconia-supported copper catalysts for NO[ndash ]CO reactions Surface copper species on zirconia , 1997 .

[28]  K. C. Waugh,et al.  The measurement of copper surface areas by reactive frontal chromatography , 1987 .

[29]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .