A size‐modified poisson–boltzmann ion channel model in a solvent of multiple ionic species: Application to voltage‐dependent anion channel

We present a new size‐modified Poisson–Boltzmann ion channel (SMPBIC) model and use it to calculate the electrostatic potential, ionic concentrations, and electrostatic solvation free energy for a voltage‐dependent anion channel (VDAC) on a biological membrane in a solution mixture of multiple ionic species. In particular, the new SMPBIC model adopts a membrane surface charge density and a natural Neumann boundary condition to reflect the charge effect of the membrane on the electrostatics of VDAC. To avoid the singularity difficulties caused by the atomic charges of VDAC, the new SMPBIC model is split into three submodels such that the solution of one of the submodels is obtained analytically and contains all the singularity points of the SMPBIC model. The other two submodels are then solved numerically much more efficiently than the original SMPBIC model. As an application of this SMPBIC submodel partitioning scheme, we derive a new formula for computing the electrostatic solvation free energy. Numerical results for a human VDAC isoform 1 (hVDAC1) in three different salt solutions, each with up to five different ionic species, confirm the significant effects of membrane surface charges on both the electrostatics and ionic concentrations. The results also show that the new SMPBIC model can describe well the anion selectivity property of hVDAC1, and that the new electrostatic solvation free energy formula can significantly improve the accuracy of the currently used formula. © 2019 Wiley Periodicals, Inc.

[1]  Sebastian Hiller,et al.  References and Notes Supporting Online Material Materials and Methods Figures S1 to S5 Table S1 References Solution Structure of the Integral Human Membrane Protein Vdac-1 in Detergent Micelles , 2022 .

[2]  Sunhwan Jo,et al.  PBEQ-Solver for online visualization of electrostatic potential of biomolecules , 2008, Nucleic Acids Res..

[3]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[4]  O. Choudhary,et al.  The electrostatics of VDAC: implications for selectivity and gating. , 2010, Journal of molecular biology.

[5]  Patrice Koehl,et al.  AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation. , 2010, The Journal of chemical physics.

[6]  J. Lemasters,et al.  Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. , 2006, Biochimica et biophysica acta.

[7]  Peipei Ping,et al.  The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating , 2008, Proceedings of the National Academy of Sciences.

[8]  Joshua L Adelman,et al.  Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1 , 2014, Nature Structural &Molecular Biology.

[9]  E. Tajkhorshid,et al.  Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target , 2017, Front. Physiol..

[10]  S. Bezrukov,et al.  VDAC inhibition by tubulin and its physiological implications. , 2012, Biochimica et biophysica acta.

[11]  B. Li,et al.  Continuum electrostatics for ionic solutions with non-uniform ionic sizes , 2009 .

[12]  Michael Habeck,et al.  Structure of the human voltage-dependent anion channel , 2008, Proceedings of the National Academy of Sciences.

[13]  Jejoong Yoo,et al.  Modeling and simulation of ion channels. , 2012, Chemical reviews.

[14]  M. Colombini,et al.  On the Role of VDAC in Apoptosis: Fact and Fiction , 2005, Journal of bioenergetics and biomembranes.

[15]  M. Colombini VDAC structure, selectivity, and dynamics. , 2012, Biochimica et biophysica acta.

[16]  Longzhu Q. Shen,et al.  A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins , 2018, International journal of molecular sciences.

[17]  Patrice Koehl,et al.  Beyond the Poisson-Boltzmann model: modeling biomolecule-water and water-water interactions. , 2009, Physical review letters.

[18]  Minxin Chen,et al.  riangulated manifold meshing method preserving molecular surface topology , 2012 .

[19]  C. Baines,et al.  The role of VDAC in cell death: friend or foe? , 2012, Biochimica et biophysica acta.

[20]  V. Shoshan-Barmatz,et al.  VDAC, a multi-functional mitochondrial protein as a pharmacological target. , 2012, Mitochondrion.

[21]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[22]  K. Murayama,et al.  Estimation of surface charges in some biological membranes , 2005, The Journal of Membrane Biology.

[23]  P. Koehl,et al.  Modified Poisson–Boltzmann equations for characterizing biomolecular solvation , 2014 .

[24]  Y. Jan,et al.  A quantitative assessment of models for voltage-dependent gating of ion channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yang Xie,et al.  SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson‐Boltzmann equation , 2017, J. Comput. Chem..

[26]  Duan Chen,et al.  MIBPB: A software package for electrostatic analysis , 2011, J. Comput. Chem..

[27]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[28]  Ray Luo,et al.  Exploring accurate Poisson-Boltzmann methods for biomolecular simulations. , 2013, Computational & theoretical chemistry.

[29]  V. De Pinto,et al.  VDAC, a multi-functional mitochondrial protein regulating cell life and death. , 2010, Molecular aspects of medicine.

[30]  T. Heimburg Physical Properties of Biological Membranes , 2009, 0902.2454.

[31]  M. Colombini,et al.  Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels , 1997, The Journal of Membrane Biology.

[32]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[33]  M. Colombini,et al.  VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. , 1997, Biophysical journal.

[34]  Dexuan Xie,et al.  New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics , 2014, J. Comput. Phys..

[35]  Nathan A. Baker,et al.  Poisson-Boltzmann Methods for Biomolecular Electrostatics , 2004, Numerical Computer Methods, Part D.

[36]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[37]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[38]  E. Murphy,et al.  Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury? , 2012, Biochimica et biophysica acta.

[39]  B. Roux Influence of the membrane potential on the free energy of an intrinsic protein. , 1997, Biophysical journal.

[40]  B. Roux The membrane potential and its representation by a constant electric field in computer simulations. , 2008, Biophysical journal.

[41]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[42]  M. Colombini The VDAC channel: Molecular basis for selectivity. , 2016, Biochimica et biophysica acta.

[43]  S. Bezrukov,et al.  ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. , 1998, Biophysical journal.

[44]  V. Shoshan-Barmatz,et al.  The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. , 2006, Current pharmaceutical design.

[45]  Nathan A. Baker,et al.  APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane , 2010, PloS one.