The roles of knowledge and representation in problem solving

Knowledge and representation are separate, but equally important, concepts for designing and analyzing knowledge-based systems: knowledge describes what systems do, and representations are how they do it. Knowledge-based systems can be designed that utilize multiple knowledge sources (partitioned into different types or levels of abstraction) and multiple representations (specialized for particular inferences). This paper argues for the importance of distinguishing between the concepts of knowledge and representation, and describes advantages and pitfalls of using multiple knowledge sources and representations. Examples are presented of systems that use various combinations of knowledge and representation as their main sources of problem-solving power.

[1]  Benjamin Kuipers,et al.  Commonsense Reasoning about Causality: Deriving Behavior from Structure , 1984, Artif. Intell..

[2]  Luc Steels The componential framework and its role in reusability , 1993 .

[3]  Saul Amarel,et al.  On representations of problems of reasoning about actions , 1968 .

[4]  Randall Davis,et al.  Diagnosis Based on Description of Structure and Function , 1982, AAAI.

[5]  Y. Shoham,et al.  Temporal reasoning in artificial intelligence , 1988 .

[6]  R. Simmons Representing and Reasoning About Change in Geologic Interpretation , 1983 .

[7]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[8]  Tom Fawcett,et al.  A framework for integrating heterogeneous learning agents , 1993 .

[9]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[10]  Randall Davis,et al.  Diagnosis Via Causal Reasoning: Paths of Interaction and the Locality Principle , 1989, AAAI.

[11]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[12]  Joel Moses,et al.  Algebraic simplification: a guide for the perplexed , 1971, CACM.

[13]  Reid Simmons,et al.  Integrating multiple representations for incremental, causal simulation , 1991, [1991] Proceedings. The Second Annual Conference on AI, Simulation and Planning in High Autonomy Systems.

[14]  David E. Wilkins,et al.  Practical planning - extending the classical AI planning paradigm , 1989, Morgan Kaufmann series in representation and reasoning.

[15]  Y. Shoham Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence , 1987 .

[16]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[17]  Reid Simmons,et al.  Generate, test and debug: a paradigm for combining associational and causal reasoning , 1993 .

[18]  Brian C. Williams,et al.  Qualitative Analysis of MOS Circuits , 1984, Artif. Intell..

[19]  Matthew L. Ginsberg,et al.  Is There any Need for Domain-Dependent Control Information? , 1991, AAAI.

[20]  Boi Faltings,et al.  A Symbolic Approach to Qualitative Kinematics , 1992, Artif. Intell..

[21]  Oren Etzioni,et al.  Explanation-Based Learning: A Problem Solving Perspective , 1989, Artif. Intell..

[22]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[23]  Jon Doyle,et al.  Two Theses of Knowledge Representation: Language Restrictions, Taxonomic Classification, and the Utility of Representation Services , 1991, Artif. Intell..

[24]  J. Dekleer An assumption-based TMS , 1986 .

[25]  Mark Stefik,et al.  Planning and Meta-Planning (MOLGEN: Part 2) , 1981, Artif. Intell..

[26]  Reid G. Simmons,et al.  The Roles of Associational and Causal Reasoning in Problem Solving , 1992, Artif. Intell..

[27]  Walter Hamscher,et al.  Joshua: Uniform Access to Heterogeneous Knowledge Structures, or why Joshing Is Better than Conniving or Planning , 1987, AAAI.

[28]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[29]  Benjamin Kuipers,et al.  Using Incomplete Quantitative Knowledge In Qualitative Reasoning , 1988, AAAI.

[30]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[31]  Olivier Raiman,et al.  Order of Magnitude Reasoning , 1986, Artif. Intell..

[32]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[33]  Phyllis A. Koton,et al.  Combining causal models and case-based reasoning , 1993 .

[34]  William R. Swartout,et al.  XPLAIN: A System for Creating and Explaining Expert Consulting Programs , 1983, Artif. Intell..

[35]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[36]  Jean-Paul Krivine,et al.  Explaining Reasoning from Knowledge Level Models , 1990, ECAI.

[37]  L. Console,et al.  Diagnostic Problem Solving: Combining Heuristic, Approximate and Causal Reasoning , 1988 .

[38]  John P. McDermott,et al.  R1: A Rule-Based Configurer of Computer Systems , 1982, Artif. Intell..

[39]  Glenn A. Kramer,et al.  A Geometric Constraint Engine , 1992, Artif. Intell..

[40]  Brian C. Williams,et al.  Doing Time: Putting Qualitative Reasoning on Firmer Ground , 1986, AAAI.

[41]  William J. Clancey,et al.  Heuristic Classification , 1986, Artif. Intell..

[42]  Edward H. Shortliffe,et al.  Chapter 3 – Consultation System , 1976 .

[43]  B. Chandrasekaran Towards a Functional Architecture for Intelligence Based on Generic Information Processing Tasks , 1987, IJCAI.

[44]  Hector J. Levesque,et al.  Expressiveness and tractability in knowledge representation and reasoning 1 , 1987, Comput. Intell..

[45]  Jeffrey Van Baalen Automated Design of Specialized Representations , 1992, Artif. Intell..

[46]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[47]  Ramesh S. Patil,et al.  Causal representation of patient illness for electrolyte and acid-base diagnosis , 1981 .

[48]  Carl Hewitt,et al.  The Scientific Community Metaphor , 1988, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[50]  Michael R. Lowry The Abstraction/Implementation Model of Problem Reformulation , 1987, IJCAI.

[51]  Peter Szolovits,et al.  What Is a Knowledge Representation? , 1993, AI Mag..

[52]  Bob J. Wielinga,et al.  KADS: a modelling approach to knowledge engineering , 1992 .

[53]  Victor R. Lesser,et al.  The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty , 1980, CSUR.

[54]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[55]  Eric Horvitz,et al.  The myth of modularity in rule-based systems for reasoning with uncertainty , 1986, UAI.

[56]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[57]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[58]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[59]  Edmund H. Durfee,et al.  Approximate Processing in Real-Time Problem Solving , 1988, AI Mag..

[60]  Walter Hamscher,et al.  Modeling Digital Circuits for Troubleshooting , 1991, Artif. Intell..

[61]  Barbara Hayes-Roth,et al.  Intelligent Monitoring and Control , 1989, IJCAI.

[62]  Reid G. Simmons,et al.  Causal modelling of semiconductor fabrication , 1989, Artif. Intell. Eng..