Microbes as triggers and boosters of Type 1 Diabetes - Mediation by molecular mimicry.

[1]  M. Kriegel,et al.  Evolving concepts of host-pathobiont interactions in autoimmunity. , 2022, Current opinion in immunology.

[2]  L. Putignani,et al.  Pathophysiology of Type 1 Diabetes and Gut Microbiota Role , 2022, International journal of molecular sciences.

[3]  S. Berger,et al.  SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry , 2022, Nature.

[4]  J. Gaglia,et al.  Adult-onset autoimmune diabetes , 2022, Nature Reviews Disease Primers.

[5]  Nicholas D. Youngblut,et al.  Vertebrate host phylogeny influences gut archaeal diversity , 2021, Nature Microbiology.

[6]  J. Dunne,et al.  Adult-Onset Type 1 Diabetes: Current Understanding and Challenges , 2021, Diabetes Care.

[7]  Tanja M Lunić,et al.  Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis—A systematic immunoinformatics analysis of T cell epitopes , 2021, PloS one.

[8]  B. Guigas,et al.  Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes , 2021, Frontiers in Immunology.

[9]  E. James,et al.  Non-Genetically Encoded Epitopes Are Relevant Targets in Autoimmune Diabetes , 2021, Biomedicines.

[10]  B. Roep,et al.  Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?) , 2020, Nature Reviews Endocrinology.

[11]  Michael R Hamblin,et al.  Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. , 2020, International immunopharmacology.

[12]  L. Wen,et al.  Gut microbial metabolites alter IgA immunity in type 1 diabetes. , 2020, JCI insight.

[13]  Mark S. Anderson,et al.  Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes , 2019, Diabetes Care.

[14]  J. Ilonen,et al.  The heterogeneous pathogenesis of type 1 diabetes mellitus , 2019, Nature Reviews Endocrinology.

[15]  Alexandra J. Roth-Schulze,et al.  Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study , 2019, Pediatric diabetes.

[16]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[17]  C. Yau,et al.  Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children , 2019, Science Immunology.

[18]  Chengfei Yan,et al.  MDockPeP: An ab‐initio protein–peptide docking server , 2018, J. Comput. Chem..

[19]  C. Huttenhower,et al.  The human gut microbiome in early-onset type 1 diabetes from the TEDDY study , 2018, Nature.

[20]  D. Serreze,et al.  HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression , 2018, The Journal of Immunology.

[21]  M. Redondo,et al.  Genetics of type 1 diabetes , 2018, Pediatric diabetes.

[22]  Chengfei Yan,et al.  Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. , 2016, Structure.

[23]  Bjoern Peters,et al.  TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates , 2016, Current protocols in immunology.

[24]  M. Cunningham Rheumatic Fever, Autoimmunity, and Molecular Mimicry: The Streptococcal Connection , 2014, International reviews of immunology.

[25]  K. Coppieters,et al.  Viral infections and molecular mimicry in type 1 diabetes , 2012, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[26]  D. Finegold,et al.  Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients , 2011, Diabetes Care.

[27]  W. Langridge,et al.  Autoantigen based vaccines for type 1 diabetes. , 2011, Discovery medicine.

[28]  K. Vehik,et al.  The changing epidemiology of type 1 diabetes: why is it going through the roof? , 2011, Diabetes/metabolism research and reviews.

[29]  J. Isaacs,et al.  Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis , 2010, Annals of the Rheumatic Diseases.

[30]  D. Raoult,et al.  Gene Repertoire of Amoeba-Associated Giant Viruses , 2010, Intervirology.

[31]  Alessandro Sette,et al.  The Immune Epitope Database 2.0 , 2009, Nucleic Acids Res..

[32]  C. Polychronakos,et al.  The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. , 2008, Trends in molecular medicine.

[33]  J. Harley,et al.  Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus , 2006, Autoimmunity.

[34]  L. Guilherme,et al.  Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease , 2006, Autoimmunity.

[35]  M. Raška,et al.  Heat shock proteins in autoimmune diseases. , 2005, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia.

[36]  J. Laman,et al.  The Guillain-Barré syndrome: a true case of molecular mimicry. , 2004, Trends in immunology.

[37]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[38]  N. Rose,et al.  Type 1 diabetes: virus infection or autoimmune disease? , 2002, Nature Immunology.

[39]  J J Couper,et al.  Environmental triggers of type 1 diabetes , 2001, Journal of paediatrics and child health.

[40]  M. Jäättelä,et al.  Heat shock proteins as cellular lifeguards. , 1999, Annals of medicine.

[41]  G. Friman,et al.  Coxsackie B virus IgM in children at onset of Type 1 (insulin-dependent) diabetes mellitus: evidence for IgM induction by a recent or current infection , 1992, Diabetologia.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.