暂无分享,去创建一个
Jeffrey Cornelis | Wim Vanroose | Siegfried Cools | Wim Vanroose | Siegfried Cools | Jeffrey Cornelis
[1] E. F. DAzevedo,et al. Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors , 1992 .
[2] Samuel H. Fuller,et al. The Future of Computing Performance: Game Over or Next Level? , 2014 .
[3] Anthony T. Chronopoulos,et al. Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..
[4] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[5] G. Meurant. Computer Solution of Large Linear Systems , 1999 .
[6] J. Dongarra,et al. HPCG Benchmark: a New Metric for Ranking High Performance Computing Systems∗ , 2015 .
[7] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[8] Jörg Liesen,et al. On Chebyshev Polynomials of Matrices , 2010, SIAM J. Matrix Anal. Appl..
[9] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[10] Gérard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48 , 1987, Parallel Comput..
[11] William Gropp,et al. Scalable Non-blocking Preconditioned Conjugate Gradient Methods , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[12] Hong Zhang,et al. Hierarchical Krylov and nested Krylov methods for extreme-scale computing , 2014, Parallel Comput..
[13] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[14] Erin Carson,et al. Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .
[15] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[16] Marc Casas,et al. Iteration-fusing conjugate gradient , 2017, ICS.
[17] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[18] Wim Vanroose,et al. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..
[19] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[20] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[21] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[22] Sascha M. Schnepp,et al. Pipelined, Flexible Krylov Subspace Methods , 2015, SIAM J. Sci. Comput..
[23] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[24] Zdenek Strakos,et al. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.
[25] Anthony T. Chronopoulos,et al. Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..
[26] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[27] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[28] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[29] Sandia Report,et al. Toward a New Metric for Ranking High Performance Computing Systems , 2013 .
[30] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[31] James Demmel,et al. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..
[32] Jocelyne Erhel,et al. Varying the s in Your s-step GMRES , 2018 .
[33] Zdenek Strakos. Effectivity and optimizing of algorithms and programs on the host-computer/array-processor system , 1987, Parallel Comput..
[34] M. Rozložník,et al. ON THE NUMERICAL STABILITY ANALYSIS OF PIPELINED KRYLOV SUBSPACE METHODS , 2016 .
[35] Emmanuel Agullo,et al. Hard Faults and Soft-Errors: Possible Numerical Remedies in Linear Algebra Solvers , 2016, VECPAR.
[36] James Demmel,et al. A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..
[37] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[38] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[39] Jack J. Dongarra,et al. Improving Performance of GMRES by Reducing Communication and Pipelining Global Collectives , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[40] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[41] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[42] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[43] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[44] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[45] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[46] John Shalf,et al. The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..
[47] Wim Vanroose,et al. The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems , 2016, Parallel Comput..
[48] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[49] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[50] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[51] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.