Generalized eigenfunctions and eigenvalues: A unifying framework for Shnol-type theorems

Let $H$ be a generalized Schr\"odinger operator on a domain of a non-compact connected Riemannian manifold, and a generalized eigenfunction $u$ for $H$: that is, $u$ satisfies the equation $Hu=\lambda u$ in the weak sense but is not necessarily in $L^2$. The problem is to find conditions on the growth of $u$, so that $\lambda$ belongs to the spectrum of $H$. We unify and generalize known results on this problem. In addition, a variety of examples is provided, illustrating the different nature of the growth conditions.

[1]  Zhiqin Lu,et al.  Location of the essential spectrum in curved quantum layers , 2012, 1211.2541.

[2]  F. Bowman,et al.  Introduction to Bessel Functions , 1939 .

[3]  G. Stampacchia,et al.  Regular points for elliptic equations with discontinuous coefficients , 1963 .

[4]  M. Keller,et al.  Generalized Solutions and Spectrum for Dirichlet Forms on Graphs , 2010, 1002.1040.

[5]  Y. Pinchover Large time behavior of the heat kernel and the behavior of the Green function near criticality for nonsymmetric elliptic operators , 1992 .

[6]  A. B. D. Monvel,et al.  Journal Fü R Die Reine Und Angewandte Mathematik Eigenfunction Expansions for Generators of Dirichlet Forms , 2022 .

[7]  Y. Pinchover,et al.  On Positive Solutions of Minimal Growth For Singular p-Laplacian With Potential Term , 2007, 0707.2169.

[8]  A. Boutet de Monvel,et al.  Sch’nol’s theorem for strongly local forms , 2007, 0708.1501.

[9]  Y. Pinchover,et al.  OPTIMAL HARDY WEIGHT FOR SECOND-ORDER ELLIPTIC OPERATOR: AN ANSWER TO A PROBLEM OF AGMON , 2012, 1208.2342.

[10]  Radoslaw K. Wojciechowski,et al.  A note on self-adjoint extensions of the Laplacian on weighted graphs , 2012, 1208.6358.

[11]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[12]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[13]  D. Borthwick Schrödinger Operators , 2020, Graduate Texts in Mathematics.

[14]  D. Lenz,et al.  Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory , 2010, 1012.5050.

[15]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[16]  Large time behavior of the heat kernel , 2002, math/0206281.

[17]  M. Durand,et al.  Spectral analysis of an acoustic multistratified perturbed cylinder , 1998 .

[18]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[19]  Zhiqin Lu,et al.  On the spectrum of the Laplacian , 2014 .

[20]  Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations , 2005, math/0512430.

[21]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[22]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[23]  A Liouville-type theorem for Schr\"odinger operators , 2005, math/0512431.

[24]  A ground state alternative for singular Schrodinger operators , 2004, math/0411658.

[25]  Y. Pinchover,et al.  Shnol-type theorem for the Agmon ground state , 2017, Journal of Spectral Theory.

[26]  B. Simon Spectrum and continuum eigenfunctions of Schrödinger operators , 1981 .

[27]  A. B. D. Monvel,et al.  Eigenfunction expansions for generators of Dirichlet forms , 2003 .

[28]  Y. Pinchover On positive solutions of second-order elliptic equations, stability results, and classification , 1988 .

[29]  Alano Ancona,et al.  Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators , 2002, Nagoya Mathematical Journal.

[30]  M. Keller,et al.  Optimal Hardy inequalities for Schrödinger operators on graphs , 2016, 1612.04051.

[31]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[32]  U. Mosco,et al.  A Saint-Venant type principle for Dirichlet forms on discontinuous media , 1995 .

[33]  D. Lenz,et al.  Generalized Eigenfunctions and Spectral Theory for Strongly Local Dirichlet Forms , 2009, 0909.1107.

[34]  R. Han Shnol’s theorem and the spectrum of long range operators , 2017, Proceedings of the American Mathematical Society.

[35]  The Allegretto-Piepenbrink Theorem for strongly local forms , 2008, 0811.2135.

[36]  R. Pinsky Positive Harmonic Functions and Diffusion: References , 1995 .

[37]  Large time behavior of the heat kernel: on a theorem of Chavel and Karp , 1993 .

[38]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[39]  S. Grellier,et al.  Bounded eigenfunctions in the real hyperbolic space , 2005 .

[40]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[41]  Y. Pinchover A Liouville-type Theorem for Schrödinger Operators , 2005 .

[42]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[43]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[44]  F. Browder THE EIGENFUNCTION EXPANSION THEOREM FOR THE GENERAL SELF-ADJOINT SINGULAR ELLIPTIC PARTIAL DIFFERENTIAL OPERATOR. I. THE ANALYTICAL FOUNDATION. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Peter Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .

[46]  R. Brooks The fundamental group and the spectrum of the laplacian , 1981 .

[47]  M. Fukushima Dirichlet forms and Markov processes , 1980 .

[48]  I. Chavel,et al.  Large time behavior of the heat kernel: the parabolic λ-potential alternative , 1991 .

[49]  Daniel Lenz,et al.  Dirichlet forms and stochastic completeness of graphs and subgraphs , 2009, 0904.2985.

[50]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[51]  J. Fernåndez,et al.  Area growth and Green's function of Riemann surfaces , 1992 .

[52]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[53]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.