Closed-form relation to predict static pull-in voltage of an electrostatically actuated clamped–clamped microbeam under the effect of Casimir force

[1]  D. Vakharia,et al.  Effect of van der Waals force on pull-in voltage, frequency tuning and frequency stability of NEMS devices , 2017 .

[2]  V. Svetovoy,et al.  Influence of surface roughness on dispersion forces. , 2015, Advances in colloid and interface science.

[3]  A. R. Askari,et al.  Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability , 2014 .

[4]  Yongping Yu,et al.  An approach to predicting static responses of electrostatically actuated microbeam under the effect of fringing field and Casimir force , 2014 .

[5]  H. Nahvi,et al.  Pull-in instability of cantilever and fixed–fixed nano-switches , 2013 .

[6]  H. Haddadpour,et al.  The effect of small scale on the pull-in instability of nano-switches using DQM , 2013 .

[7]  Abdul-Majid Wazwaz,et al.  Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems , 2013 .

[8]  D. N. Pawaskar,et al.  Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application , 2011 .

[9]  Sébastien Baguet,et al.  Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors , 2011 .

[10]  S. Kitipornchai,et al.  Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces , 2010 .

[11]  H. Haddadpour,et al.  Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators , 2010 .

[12]  M. Ahmadian,et al.  Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces , 2010 .

[13]  M. Younis,et al.  An Experimental and Theoretical Investigation of Dynamic Pull-In in MEMS Resonators Actuated Electrostatically , 2010, Journal of Microelectromechanical Systems.

[14]  Paul C.-P. Chao,et al.  DC dynamic pull-in predictions for a generalized clamped–clamped micro-beam based on a continuous model and bifurcation analysis , 2008 .

[15]  Qun Wu,et al.  Numerical simulation and analysis of electrically actuated microbeam-based MEMS capacitive switch , 2008 .

[16]  G. J. Delben,et al.  Dispersion force for materials relevant for micro- and nanodevices fabrication , 2008, 0802.2124.

[17]  S. Kitipornchai,et al.  Pull-in instability of nano-switches using nonlocal elasticity theory , 2008 .

[18]  M. Porfiri,et al.  Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates , 2008, Sensors.

[19]  P. V. Zwol,et al.  Influence of random roughness on the Casimir force at small separations , 2007, 0712.1893.

[20]  G. Rezazadeh,et al.  Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches , 2007, Journal of Microelectromechanical Systems.

[21]  M. Porfiri,et al.  Review of modeling electrostatically actuated microelectromechanical systems , 2007 .

[22]  S. Krylov Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures , 2007 .

[23]  G. J. Delben,et al.  Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators , 2007 .

[24]  Ali H. Nayfeh,et al.  Dynamic pull-in phenomenon in MEMS resonators , 2007 .

[25]  M. Porfiri,et al.  Electromechanical Model of Electrically Actuated Narrow Microbeams , 2006, Journal of Microelectromechanical Systems.

[26]  Yapu Zhao,et al.  Numerical and Analytical Study on the Pull-in Instability of Micro-Structure under Electrostatic Loading , 2006 .

[27]  M. Dunn,et al.  The role of van der Waals forces in adhesion of micromachined surfaces , 2005, Nature materials.

[28]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[29]  G. L. Klimchitskaya,et al.  Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions , 2005, quant-ph/0503105.

[30]  W. Lin,et al.  Casimir effect on the pull-in parameters of nanometer switches , 2005 .

[31]  J. Kuang,et al.  Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method , 2004 .

[32]  Lei Zhang,et al.  Electromechanical model of RF MEMS switches , 2003 .

[33]  L. Shampine,et al.  Solving ODEs with MATLAB , 2003 .

[34]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[35]  Robert Puers,et al.  Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions , 2002 .

[36]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[37]  Ai Qun Liu,et al.  Mechanical design and optimization of capacitive micromachined switch , 2001 .

[38]  U. Mohideen,et al.  New developments in the Casimir effect , 2001, quant-ph/0106045.

[39]  G. L. Klimchitskaya,et al.  Higher-order conductivity corrections to the Casimir force , 2000 .

[40]  G. L. Klimchitskaya,et al.  Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals , 2000, quant-ph/0003093.

[41]  C. Genet,et al.  Casimir force between metallic mirrors , 1999, quant-ph/0105051.

[42]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[43]  G. J. Maclay,et al.  The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system , 1995 .

[44]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[45]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[46]  H. Tilmans,et al.  Electrostatically driven vacuum encapsulated polysilicon resonators , 1993 .

[47]  A. Bokaian,et al.  Natural frequencies of beams under compressive axial loads , 1988 .

[48]  D. N. Pawaskar,et al.  Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation , 2011 .

[49]  D. Roberts,et al.  On the attraction between two perfectly conducting plates , 2011 .

[50]  S. Kitipornchai,et al.  Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces , 2011 .

[51]  S. Lamoreaux The Casimir force: background, experiments, and applications , 2004 .

[52]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .