On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study
暂无分享,去创建一个
[1] Robert E. Bixby,et al. Progress in computational mixed integer programming—A look back from the other side of the tipping point , 2007, Ann. Oper. Res..
[2] M Dorigo,et al. Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..
[3] Abdel Nasser,et al. A Survey of the Quadratic Assignment Problem , 2014 .
[4] Franz Rendl,et al. Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..
[5] Warren P. Adams,et al. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .
[6] Alain Faye,et al. A polyhedral approach for a constrained quadratic 0-1 problem , 2005, Discret. Appl. Math..
[7] Alberto Caprara,et al. Constrained 0-1 quadratic programming: Basic approaches and extensions , 2008, Eur. J. Oper. Res..
[8] Leo Liberti,et al. Compact linearization for binary quadratic problems , 2007, 4OR.
[9] Alain Billionnet,et al. Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..
[10] Nikolaos V. Sahinidis,et al. A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..
[11] Hoai An Le Thi,et al. An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs , 2010 .
[12] Tobias Achterberg,et al. SCIP: solving constraint integer programs , 2009, Math. Program. Comput..
[13] Christodoulos A. Floudas,et al. αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..
[14] Endre Boros,et al. Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions , 1993, Math. Oper. Res..
[15] Philippe Michelon,et al. A linearization framework for unconstrained quadratic (0-1) problems , 2009, Discret. Appl. Math..
[16] Anuj Mehrotra. Cardinality Constrained Boolean Quadratic Polytope , 1997, Discret. Appl. Math..
[17] Christodoulos A. Floudas,et al. GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.
[18] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[19] R. Raman,et al. RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .
[20] Frédéric Roupin,et al. Improved semidefinite bounding procedure for solving Max-Cut problems to optimality , 2014, Math. Program..
[21] Micael Gallego,et al. A branch and bound algorithm for the maximum diversity problem , 2010, Eur. J. Oper. Res..
[22] George L. Nemhauser,et al. Min-cut clustering , 1993, Math. Program..
[23] G. Nemhauser,et al. Integer Programming , 2020 .
[24] Adam N. Letchford,et al. On Nonconvex Quadratic Programming with Box Constraints , 2009, SIAM J. Optim..
[25] Edward Rothberg,et al. An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions , 2007, INFORMS J. Comput..
[26] T. Westerlund,et al. The Coulomb Glass - Modeling and Computational Experience with a Large Scale 0–1 QP Problem , 2011 .
[27] Panos M. Pardalos,et al. Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.
[28] Pierre Hansen,et al. Improved compact linearizations for the unconstrained quadratic 0-1 minimization problem , 2009, Discret. Appl. Math..
[29] David Pisinger,et al. The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..
[30] Dimitris Bertsimas,et al. Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..
[31] Manfred W. Padberg,et al. The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..
[32] F. B A R A H O N A,et al. EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .
[33] Cid C. de Souza,et al. The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations , 2000, Eur. J. Oper. Res..
[34] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[35] Francesco Maffioli,et al. An annotated bibliography of combinatorial optimization problems with fixed cardinality constraints , 2006, Discret. Appl. Math..
[36] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[37] David Pisinger,et al. Upper bounds and exact algorithms for p-dispersion problems , 2006, Comput. Oper. Res..
[38] F. Glover. IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .
[39] A. F. Adams,et al. The Survey , 2021, Dyslexia in Higher Education.
[40] Alain Billionnet,et al. Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .
[41] J. Ben Rosen,et al. A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..
[42] Alain Billionnet,et al. Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..
[43] A. Lodi,et al. Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report , 2014 .
[44] Alain Billionnet,et al. An efficient algorithm for a task allocation problem , 1992, JACM.
[45] Michael R. Bussieck,et al. PAVER 2.0: an open source environment for automated performance analysis of benchmarking data , 2014, J. Glob. Optim..
[46] Fred W. Glover,et al. Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..
[47] Philippe Michelon,et al. “Miniaturized” Linearizations for Quadratic 0/1 Problems , 2005, Ann. Oper. Res..
[48] Christodoulos A. Floudas,et al. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.
[49] Ignacio E. Grossmann,et al. Computational advances in solving Mixed Integer Linear Programming problems To Professor Sauro Pierucci for leadership in Process Systems Engineering , 2011 .
[50] Frédéric Roupin,et al. Solving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cluster problems to optimality with semidefi , 2012, Mathematical Programming.
[51] Hanif D. Sherali,et al. A simultaneous lifting strategy for identifying new classes of facets for the Boolean quadric polytope , 1995, Oper. Res. Lett..