On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study

This paper addresses the solution of a cardinality Boolean quadratic programming problem using three different approaches. The first transforms the original problem into six mixed-integer linear programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data.

[1]  Robert E. Bixby,et al.  Progress in computational mixed integer programming—A look back from the other side of the tipping point , 2007, Ann. Oper. Res..

[2]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[3]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[4]  Franz Rendl,et al.  Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..

[5]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[6]  Alain Faye,et al.  A polyhedral approach for a constrained quadratic 0-1 problem , 2005, Discret. Appl. Math..

[7]  Alberto Caprara,et al.  Constrained 0-1 quadratic programming: Basic approaches and extensions , 2008, Eur. J. Oper. Res..

[8]  Leo Liberti,et al.  Compact linearization for binary quadratic problems , 2007, 4OR.

[9]  Alain Billionnet,et al.  Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..

[10]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[11]  Hoai An Le Thi,et al.  An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs , 2010 .

[12]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[13]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[14]  Endre Boros,et al.  Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions , 1993, Math. Oper. Res..

[15]  Philippe Michelon,et al.  A linearization framework for unconstrained quadratic (0-1) problems , 2009, Discret. Appl. Math..

[16]  Anuj Mehrotra Cardinality Constrained Boolean Quadratic Polytope , 1997, Discret. Appl. Math..

[17]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[18]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[19]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[20]  Frédéric Roupin,et al.  Improved semidefinite bounding procedure for solving Max-Cut problems to optimality , 2014, Math. Program..

[21]  Micael Gallego,et al.  A branch and bound algorithm for the maximum diversity problem , 2010, Eur. J. Oper. Res..

[22]  George L. Nemhauser,et al.  Min-cut clustering , 1993, Math. Program..

[23]  G. Nemhauser,et al.  Integer Programming , 2020 .

[24]  Adam N. Letchford,et al.  On Nonconvex Quadratic Programming with Box Constraints , 2009, SIAM J. Optim..

[25]  Edward Rothberg,et al.  An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions , 2007, INFORMS J. Comput..

[26]  T. Westerlund,et al.  The Coulomb Glass - Modeling and Computational Experience with a Large Scale 0–1 QP Problem , 2011 .

[27]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[28]  Pierre Hansen,et al.  Improved compact linearizations for the unconstrained quadratic 0-1 minimization problem , 2009, Discret. Appl. Math..

[29]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[30]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[31]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[32]  F. B A R A H O N A,et al.  EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .

[33]  Cid C. de Souza,et al.  The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations , 2000, Eur. J. Oper. Res..

[34]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[35]  Francesco Maffioli,et al.  An annotated bibliography of combinatorial optimization problems with fixed cardinality constraints , 2006, Discret. Appl. Math..

[36]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[37]  David Pisinger,et al.  Upper bounds and exact algorithms for p-dispersion problems , 2006, Comput. Oper. Res..

[38]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[39]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[40]  Alain Billionnet,et al.  Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .

[41]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[42]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[43]  A. Lodi,et al.  Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report , 2014 .

[44]  Alain Billionnet,et al.  An efficient algorithm for a task allocation problem , 1992, JACM.

[45]  Michael R. Bussieck,et al.  PAVER 2.0: an open source environment for automated performance analysis of benchmarking data , 2014, J. Glob. Optim..

[46]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[47]  Philippe Michelon,et al.  “Miniaturized” Linearizations for Quadratic 0/1 Problems , 2005, Ann. Oper. Res..

[48]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[49]  Ignacio E. Grossmann,et al.  Computational advances in solving Mixed Integer Linear Programming problems To Professor Sauro Pierucci for leadership in Process Systems Engineering , 2011 .

[50]  Frédéric Roupin,et al.  Solving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cluster problems to optimality with semidefi , 2012, Mathematical Programming.

[51]  Hanif D. Sherali,et al.  A simultaneous lifting strategy for identifying new classes of facets for the Boolean quadric polytope , 1995, Oper. Res. Lett..