Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients

[1]  Eduardo N. Taboada,et al.  Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. , 2013, Journal of microbiological methods.

[2]  J. Triñanes,et al.  Emerging Vibrio risk at high latitudes in response to ocean warming , 2013 .

[3]  G. Gerdts,et al.  Temporal and Spatial Distribution Patterns of Potentially Pathogenic Vibrio spp. at Recreational Beaches of the German North Sea , 2013, Microbial Ecology.

[4]  R. Dieckmann,et al.  Genotypic Diversity and Virulence Characteristics of Clinical and Environmental Vibrio vulnificus Isolates from the Baltic Sea Region , 2013, Applied and Environmental Microbiology.

[5]  S. Yamasaki,et al.  Novel Cholix Toxin Variants, ADP-Ribosylating Toxins in Vibrio cholerae Non-O1/Non-O139 Strains, and Their Pathogenicity , 2012, Infection and Immunity.

[6]  Julian Parkhill,et al.  Evidence for several waves of global transmission in the seventh cholera pandemic , 2011, Nature.

[7]  L. Geue,et al.  Determination of Serotypes of Shiga Toxin-Producing Escherichia coli Isolates by Intact Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2010, Applied and Environmental Microbiology.

[8]  Stephen H. Jones,et al.  Comparison of the Pathogenic Potentials of Environmental and Clinical Vibrio parahaemolyticus Strains Indicates a Role for Temperature Regulation in Virulence , 2010, Applied and Environmental Microbiology.

[9]  F. Yildiz,et al.  Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis , 2010, Microbiology.

[10]  R. Dieckmann,et al.  Rapid identification and characterization of Vibrio species using whole‐cell MALDI‐TOF mass spectrometry , 2010, Journal of applied microbiology.

[11]  M. Ravichandran,et al.  Construction and characterization of rtxA and rtxC mutants of auxotrophic O139 Vibrio cholerae. , 2010, Microbial pathogenesis.

[12]  R. Colwell,et al.  Diversity and distribution of cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. , 2010, Environmental microbiology reports.

[13]  Francisco J. Roig,et al.  pilF Polymorphism-Based PCR To Distinguish Vibrio vulnificus Strains Potentially Dangerous to Public Health , 2009, Applied and Environmental Microbiology.

[14]  D. Raoult,et al.  Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  T. Ramamurthy,et al.  Molecular characterization of serogrouping and virulence genes of Malaysian Vibrio cholerae isolated from different sources. , 2009, The Journal of general and applied microbiology.

[16]  G. Chowdhury,et al.  Incidence, Virulence Factors, and Clonality among Clinical Strains of Non-O1, Non-O139 Vibrio cholerae Isolates from Hospitalized Diarrheal Patients in Kolkata, India , 2009, Journal of Clinical Microbiology.

[17]  M. Erhard,et al.  Rapid Classification and Identification of Salmonellae at the Species and Subspecies Levels by Whole-Cell Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass Spectrometry † , 2008 .

[18]  S. Faruque,et al.  Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. , 2008, DNA and cell biology.

[19]  Sen-Yung Hsieh,et al.  Highly Efficient Classification and Identification of Human Pathogenic Bacteria by MALDI-TOF MS*S , 2008, Molecular & Cellular Proteomics.

[20]  L. Rørvik,et al.  A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus , 2007, Letters in applied microbiology.

[21]  Karla J. F. Satchell MARTX, Multifunctional Autoprocessing Repeats-in-Toxin Toxins , 2007, Infection and Immunity.

[22]  B. Pang,et al.  Genetic Diversity of Toxigenic and Nontoxigenic Vibrio cholerae Serogroups O1 and O139 Revealed by Array-Based Comparative Genomic Hybridization , 2007, Journal of bacteriology.

[23]  M. Waldor,et al.  Antimicrobial peptides activate the Vibrio choleraeσE regulon through an OmpU‐dependent signalling pathway , 2007, Molecular microbiology.

[24]  R. Colwell,et al.  Septaplex PCR assay for rapid identification of Vibrio cholerae including detection of virulence and int SXT genes. , 2006, FEMS microbiology letters.

[25]  C. Tarr,et al.  Identification of Vibrio Isolates by a Multiplex PCR Assay and rpoB Sequence Determination , 2006, Journal of Clinical Microbiology.

[26]  K. Alpers,et al.  Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. , 2006, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[27]  Y. Takeda,et al.  Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. , 2006, Environmental microbiology.

[28]  R. Kucherlapati,et al.  Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Waldor,et al.  The Vibrio cholerae ToxR-Regulated Porin OmpU Confers Resistance to Antimicrobial Peptides , 2004, Infection and Immunity.

[30]  D. Sack,et al.  Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Attridge,et al.  Cloning and characterization of a novel haemolysin in Vibrio cholerae O1 that does not directly contribute to the virulence of the organism. , 2002, Microbiology.

[32]  Sunny C. Jiang,et al.  Molecular Analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 Strains: Clonal Relationships between Clinical and Environmental Isolates , 2001, Applied and Environmental Microbiology.

[33]  K. Yuen,et al.  Detection of RTX Toxin Gene in Vibrio cholerae by PCR , 2001, Journal of Clinical Microbiology.

[34]  Rita R. Colwell,et al.  Genotypes Associated with Virulence in Environmental Isolates of Vibrio cholerae , 2001, Applied and Environmental Microbiology.

[35]  Albert Balows,et al.  Manual of Clinical Microbiology, 7th ed. , 2000 .

[36]  Jane W. Marsh,et al.  Genetic and Transcriptional Analyses of theVibrio cholerae Mannose-Sensitive Hemagglutinin Type 4 Pilus Gene Locus , 1999, Journal of bacteriology.

[37]  S. Yamasaki,et al.  Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. , 1998, FEMS immunology and medical microbiology.

[38]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[39]  L. Beutin,et al.  Rapid visual detection of Escherichia coli and Vibrio cholerae Heat-labile enterotoxins by nitrocellulose enzyme-linked immunosorbent assay , 1984, Journal of clinical microbiology.

[40]  K. Timmis,et al.  Rapid assay for the determination of bacterial resistance to the lethal activity of serum , 1979 .

[41]  Ellen Jo Baron,et al.  Manual of clinical microbiology , 1975 .

[42]  Lennart Sjöberg,et al.  Ahlstrand E , Persson L , Tidefelt U , Söderquist B. Alteration of the colonization pattern of coagulase-negative staphylococci in patients undergoing treatment for hematological malignancy. Eur J Clin Microbiol Infect Dis , 2011 .

[43]  S. Huhulescu,et al.  Occurrence of Vibrio cholerae serogroups other than O1 and O139 in Austria , 2006, Wiener klinische Wochenschrift.