The problem with value

[1]  P. Holland,et al.  Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. , 1979, Journal of experimental psychology. Animal behavior processes.

[2]  Jeff T. Larsen,et al.  The psychophysiology of emotion. , 1993 .

[3]  E. Rolls,et al.  Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[4]  K. Deisseroth,et al.  Optogenetics , 2013, Proceedings of the National Academy of Sciences.

[5]  Colin Camerer,et al.  A framework for studying the neurobiology of value-based decision making , 2008, Nature Reviews Neuroscience.

[6]  Edmund T. Rolls,et al.  Sensory specific satiety in man , 1981, Physiology & Behavior.

[7]  Trevor W Robbins,et al.  Appetitive Behavior , 2003, Annals of the New York Academy of Sciences.

[8]  B. Balleine,et al.  Multiple Forms of Value Learning and the Function of Dopamine , 2009 .

[9]  E. Thorndike “Animal Intelligence” , 1898, Nature.

[10]  M. Dean What Can Neuroeconomics Tell Us About Economics (and Vice Versa) , 2013 .

[11]  A. Dickinson Actions and habits: the development of behavioural autonomy , 1985 .

[12]  Mikhail G. Shapiro,et al.  Unparalleled control of neural activity using orthogonal pharmacogenetics. , 2012, ACS chemical neuroscience.

[13]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[14]  Geoffrey Schoenbaum,et al.  Learning theory: A driving force in understanding orbitofrontal function , 2014, Neurobiology of Learning and Memory.

[15]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[16]  Timothy Edward John Behrens,et al.  Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex , 2010, Proceedings of the National Academy of Sciences.

[17]  Peter Bossaerts,et al.  Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings , 2011, PLoS Comput. Biol..

[18]  J. O'Doherty,et al.  Evidence for a Common Representation of Decision Values for Dissimilar Goods in Human Ventromedial Prefrontal Cortex , 2009, The Journal of Neuroscience.

[19]  J. O'Doherty,et al.  Encoding Predictive Reward Value in Human Amygdala and Orbitofrontal Cortex , 2003, Science.

[20]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[21]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[22]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[23]  Klaus Wunderlich,et al.  Neural computations underlying action-based decision making in the human brain , 2009, Proceedings of the National Academy of Sciences.

[24]  B. Balleine,et al.  Parallel incentive processing: an integrated view of amygdala function , 2006, Trends in Neurosciences.

[25]  Jonathan D. Cohen,et al.  Neuroeconomics: cross-currents in research on decision-making , 2006, Trends in Cognitive Sciences.

[26]  G. Schoenbaum,et al.  Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning , 1998, Nature Neuroscience.

[27]  Daeyeol Lee,et al.  Order-Dependent Modulation of Directional Signals in the Supplementary and Presupplementary Motor Areas , 2007, The Journal of Neuroscience.

[28]  Colin Camerer Neuroeconomics: Opening the Gray Box , 2008, Neuron.

[29]  Peter Bossaerts,et al.  The Neural Representation of Unexpected Uncertainty during Value-Based Decision Making , 2013, Neuron.

[30]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[31]  Caroline F. Zink,et al.  Human striatal activation reflects degree of stimulus saliency , 2006, NeuroImage.

[32]  J. O'Doherty,et al.  Orbitofrontal Cortex Encodes Willingness to Pay in Everyday Economic Transactions , 2007, The Journal of Neuroscience.

[33]  Sylvia D. Kreibig,et al.  Autonomic nervous system activity in emotion: A review , 2010, Biological Psychology.

[34]  Colin Camerer,et al.  Social neuroeconomics: the neural circuitry of social preferences , 2007, Trends in Cognitive Sciences.

[35]  E. Rolls,et al.  Value, Pleasure and Choice in the Ventral Prefrontal Cortex , 2022 .

[36]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[37]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[38]  P. L. Brown,et al.  Auto-shaping of the pigeon's key-peck. , 1968, Journal of the experimental analysis of behavior.

[39]  J. O'Doherty,et al.  Appetitive and Aversive Olfactory Learning in Humans Studied Using Event-Related Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[40]  P. Glimcher,et al.  Title: the Neural Representation of Subjective Value under Risk and Ambiguity 1 2 , 2009 .

[41]  E. Fischer Conditioned Reflexes , 1942, American journal of physical medicine.

[42]  K. Berridge From prediction error to incentive salience: mesolimbic computation of reward motivation , 2012, The European journal of neuroscience.

[43]  Antonio Rangel,et al.  Economic choices can be made using only stimulus values , 2010, Proceedings of the National Academy of Sciences.

[44]  B. Balleine,et al.  Goal-directed instrumental action: contingency and incentive learning and their cortical substrates , 1998, Neuropharmacology.

[45]  C. Olson,et al.  In Monkeys Making Value-Based Decisions, LIP Neurons Encode Cue Salience and Not Action Value , 2012, Science.

[46]  M. Farah,et al.  Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. , 2004, Cerebral cortex.

[47]  Hugo D. Critchley,et al.  Modulation of Emotional Appraisal by False Physiological Feedback during fMRI , 2007, PloS one.

[48]  M. Jarvik,et al.  An Improved One-Trial Passive Avoidance Learning Situation , 1967, Psychological reports.

[49]  E. Rolls,et al.  Abstract reward and punishment representations in the human orbitofrontal cortex , 2001, Nature Neuroscience.

[50]  D. Kahneman,et al.  Back to Bentham? Explorations of experience utility , 1997 .

[51]  P. Dayan,et al.  Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control , 2005, Nature Neuroscience.

[52]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[53]  Vivian V. Valentin,et al.  Determining the Neural Substrates of Goal-Directed Learning in the Human Brain , 2007, The Journal of Neuroscience.

[54]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[55]  E. Murray,et al.  Control of Response Selection by Reinforcer Value Requires Interaction of Amygdala and Orbital Prefrontal Cortex , 2000, The Journal of Neuroscience.

[56]  J. O'Doherty,et al.  Lights, Camembert, Action! The Role of Human Orbitofrontal Cortex in Encoding Stimuli, Rewards, and Choices , 2007, Annals of the New York Academy of Sciences.

[57]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[58]  B. Balleine,et al.  Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning , 2004, The European journal of neuroscience.

[59]  E. Rolls,et al.  Reward-related Reversal Learning after Surgical Excisions in Orbito-frontal or Dorsolateral Prefrontal Cortex in Humans , 2004, Journal of Cognitive Neuroscience.

[60]  N. Mackintosh A Theory of Attention: Variations in the Associability of Stimuli with Reinforcement , 1975 .

[61]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[62]  R. Solomon,et al.  An opponent-process theory of motivation. I. Temporal dynamics of affect. , 1974, Psychological review.

[63]  P. Glimcher,et al.  Action and Outcome Encoding in the Primate Caudate Nucleus , 2007, The Journal of Neuroscience.

[64]  William R. Stauffer,et al.  Dopamine prediction error responses integrate subjective value from different reward dimensions , 2014, Proceedings of the National Academy of Sciences.

[65]  J. O'Doherty,et al.  The Role of the Ventromedial Prefrontal Cortex in Abstract State-Based Inference during Decision Making in Humans , 2006, The Journal of Neuroscience.

[66]  B. Balleine,et al.  The role of the dorsomedial striatum in instrumental conditioning , 2005, The European journal of neuroscience.

[67]  A. Damasio,et al.  Insensitivity to future consequences following damage to human prefrontal cortex , 1994, Cognition.

[68]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[69]  Timothy Edward John Behrens,et al.  Segregated Encoding of Reward–Identity and Stimulus–Reward Associations in Human Orbitofrontal Cortex , 2013, The Journal of Neuroscience.

[70]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[71]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[72]  J. O'Doherty,et al.  Dissociating Valence of Outcome from Behavioral Control in Human Orbital and Ventral Prefrontal Cortices , 2003, The Journal of Neuroscience.

[73]  J. Konorski Conditioned reflexes and neuron organization. , 1948 .

[74]  M. Roesch,et al.  Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex , 2004, Science.

[75]  P. Montague,et al.  Neural Economics and the Biological Substrates of Valuation , 2002, Neuron.

[76]  J. O'Doherty,et al.  Reward representations and reward-related learning in the human brain: insights from neuroimaging , 2004, Current Opinion in Neurobiology.

[77]  P. Glimcher,et al.  Neuroeconomics: The Consilience of Brain and Decision , 2004, Science.

[78]  K. Berridge Food reward: Brain substrates of wanting and liking , 1996, Neuroscience & Biobehavioral Reviews.

[79]  M. Bradley,et al.  Looking at pictures: affective, facial, visceral, and behavioral reactions. , 1993, Psychophysiology.

[80]  W. Schultz,et al.  Relative reward preference in primate orbitofrontal cortex , 1999, Nature.

[81]  J. Maunsell Neuronal representations of cognitive state: reward or attention? , 2004, Trends in Cognitive Sciences.

[82]  R. Colwill,et al.  Encoding of the unconditioned stimulus in Pavlovian conditioning , 1994 .

[83]  T. Robbins,et al.  Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[84]  Adrian M. Owen,et al.  Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning , 2012, NeuroImage.

[85]  Daniel C. McNamee,et al.  Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex , 2013, Nature Neuroscience.

[86]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[87]  Guillem R. Esber,et al.  All that glitters ... dissociating attention and outcome expectancy from prediction errors signals. , 2010, Journal of neurophysiology.

[88]  R. Solomon,et al.  An Opponent-Process Theory of Motivation , 1978 .

[89]  Geoffrey Schoenbaum,et al.  Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task , 2003, The Journal of Neuroscience.

[90]  P. Glimcher,et al.  The neural correlates of subjective value during intertemporal choice , 2007, Nature Neuroscience.

[91]  H. M. Jenkins,et al.  The form of the auto-shaped response with food or water reinforcers. , 1973, Journal of the experimental analysis of behavior.

[92]  Guillem R. Esber,et al.  Surprise! Neural correlates of Pearce–Hall and Rescorla–Wagner coexist within the brain , 2012, The European journal of neuroscience.