Exploration of the duality between generalized geometry and extraordinary magnetoresistance

We outline the duality between the extraordinary magnetoresistance (EMR), observed in semiconductor-metal hybrids, and non-symmetric gravity coupled to a diffusive $U(1)$ gauge field. The corresponding gravity theory may be interpreted as the generalized complex geometry of the semi-direct product of the symmetric metric and the antisymmetric Kalb-Ramond field: ($g_{\mu\nu}+\beta_{\mu\nu}$). We construct the four dimensional covariant field theory and compute the resulting equations of motion. The equations encode the most general form of EMR within a well defined variational principle, for specific lower dimensional embedded geometric scenarios. Our formalism also reveals the emergence of additional diffusive pseudo currents for a completely dynamic field theory of EMR. The proposed equations of motion now include terms that induce geometrical deformations in the device geometry in order to optimize the EMR. This bottom-up dual description between EMR and generalized geometry/gravity lends itself to a deeper insight into the EMR effect with the promise of potentially new physical phenomena and properties.

[1]  A. Lucas,et al.  Sign of viscous magnetoresistance in electron fluids , 2019, Physical Review B.

[2]  Sean M. Carroll,et al.  Spacetime and Geometry , 2019 .

[3]  L. Rodriguez On The Principle of Holographic Scaling , 2019 .

[4]  Han Yan Hyperbolic fracton model, subsystem symmetry, and holography. II. The dual eight-vertex model , 2018, Physical Review B.

[5]  P. Lazzeretti Current density tensors. , 2018, The Journal of chemical physics.

[6]  A. Stern,et al.  Probing topological superconductors with emergent gravity , 2018, Physical Review B.

[7]  S. Grozdanov,et al.  Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography , 2018, 1801.03199.

[8]  A. Lucas,et al.  Hydrodynamics of electrons in graphene , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  S. Grozdanov,et al.  Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma , 2017, Journal of High Energy Physics.

[10]  M. Pretko Emergent gravity of fractons: Mach's principle revisited , 2017, 1702.07613.

[11]  S. Grozdanov,et al.  Generalized global symmetries and dissipative magnetohydrodynamics , 2016, 1610.07392.

[12]  Jan Vysoký Geometry of Membrane Sigma Models , 2015, 1512.08156.

[13]  B. Jurčo,et al.  Leibniz algebroids, generalized Bismut connections and Einstein-Hilbert actions , 2015, 1503.03069.

[14]  L. Ram-Mohan,et al.  Extraordinary magnetoresistance in two and three dimensions: Geometrical optimization , 2013 .

[15]  Petr Hořava,et al.  Emergent Gravity at a Lifshitz Point from a Bose Liquid on the Lattice , 2010, 1003.0009.

[16]  S. Sachdev Condensed Matter and AdS/CFT , 2010, 1002.2947.

[17]  M. Rangamani,et al.  Gravity and hydrodynamics: lectures on the fluid-gravity correspondence , 2009, 0905.4352.

[18]  D. Minic,et al.  Theory of high-temperature superconductivity and effective gravity , 2008, 0804.2880.

[19]  Jonathan E. Moussa,et al.  Response of an extraordinary magnetoresistance read head to a magnetic bit , 2003 .

[20]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[21]  M. Novello,et al.  Artificial Black Holes , 2002 .

[22]  John M. Sullivan,et al.  Finite-Element Modeling of Extraordinary Magnetoresistance in Thin Film Semiconductors with Metallic Inclusions , 2001 .

[23]  D. R. Hines,et al.  Extraordinary magnetoresistance in externally shunted van der Pauw plates , 2001 .

[24]  Hines,et al.  Enhanced Room-Temperature Geometric Magnetoresistance in Inhomogeneous Narrow-Gap Semiconductors. , 2000, Science.

[25]  D. Bergman,et al.  Calculation of strong-field magnetoresistance in some periodic composites. , 1994, Physical review. B, Condensed matter.

[26]  M. Malagoli,et al.  Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density , 1994 .

[27]  C. Callan,et al.  Strings in background fields , 1985 .

[28]  M. Visser,et al.  Analogue Gravity. , 2005, Living reviews in relativity.

[29]  R. Popovic Hall effect devices : magnetic sensors and characterization of semiconductors , 1991 .