Splitting methods in the numerical integration of non-autonomous dynamical systems

We present a procedure leading to efficient splitting schemes for the time integration of explicitly time dependent partitioned linear differential equations arising when certain partial differential equations are previously discretized in space. In the first stage we analyze the order conditions of the corresponding autonomous problem and construct new 6th-order methods. In the second stage, by following a procedure previously designed by the authors, we generalize the methods to the time dependent case in such a way that no order reduction is present. The resulting schemes compare favorably with other integrators previously available.

[1]  Fernando Casas,et al.  Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.

[2]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[3]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[4]  Sergio Blanes,et al.  Splitting methods for the time-dependent Schrödinger equation , 2000 .

[5]  Fernando Casas,et al.  Error Analysis of Splitting Methods for the Time Dependent Schrödinger Equation , 2010, SIAM J. Sci. Comput..

[6]  S. Blanes,et al.  Splitting methods for non-autonomous separable dynamical systems , 2006 .

[7]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[8]  Fasma Diele,et al.  Splitting and composition methods for explicit time dependence in separable dynamical systems , 2010, J. Comput. Appl. Math..

[9]  J. M. Sanz-Serna,et al.  Classical numerical integrators for wave‐packet dynamics , 1996 .

[10]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[11]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[12]  Mark Sofroniou,et al.  Derivation of symmetric composition constants for symmetric integrators , 2005, Optim. Methods Softw..

[13]  Fernando Casas,et al.  On the Linear Stability of Splitting Methods , 2008, Found. Comput. Math..

[14]  Fernando Casas,et al.  Splitting methods for non-autonomous linear systems , 2007, Int. J. Comput. Math..

[15]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[16]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[17]  S. Gray,et al.  Classical Hamiltonian structures in wave packet dynamics , 1994 .

[18]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[19]  R. K. Preston,et al.  Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator , 1977 .

[20]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[21]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[22]  G. Rodrigue,et al.  High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.

[23]  Fernando Casas,et al.  Symplectic splitting operator methods for the time-dependent Schrodinger equation. , 2006, The Journal of chemical physics.

[24]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[25]  Fernando Casas,et al.  Improved High Order Integrators Based on the Magnus Expansion , 2000 .