Lasing in strained germanium microbridges

[1]  J. Hartmann,et al.  GeSn heterostructure micro-disk laser operating at 230 K. , 2018, Optics express.

[2]  R. Loo,et al.  Carrier scattering induced linewidth broadening in in situ P-doped Ge layers on Si , 2018, Applied Physics Letters.

[3]  F. Boeuf,et al.  Germanium microlasers on metallic pedestals , 2018, APL Photonics.

[4]  E. Gullikson,et al.  Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity , 2018 .

[5]  K. Saraswat,et al.  Room temperature lasing unraveled by a strong resonance between gain and parasitic absorption in uniaxially strained germanium , 2018 .

[6]  Wei Du,et al.  Si-Based GeSn Lasers with Wavelength Coverage of 2–3 μm and Operating Temperatures up to 180 K , 2017 .

[7]  K. Saraswat,et al.  Low-threshold optically pumped lasing in highly strained germanium nanowires , 2017, Nature Communications.

[8]  Masahiko Watanabe,et al.  Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum , 2017, Nature Communications.

[9]  J. Hartmann,et al.  Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K , 2017, 1704.06436.

[10]  J. Faist,et al.  Top-down method to introduce ultra-high elastic strain , 2017 .

[11]  C. Schulte-Braucks,et al.  Optically Pumped GeSn Microdisk Lasers on Si , 2016 .

[12]  V. Reboud,et al.  Germanium under high tensile stress: nonlinear dependence of direct band gap vs. strain , 2016, 1606.01668.

[13]  M. Goano,et al.  Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium , 2016 .

[14]  V. Reboud,et al.  Accurate strain measurements in highly strained Ge microbridges , 2016, 1604.04391.

[15]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[16]  R W Millar,et al.  Analysis of Ge micro-cavities with in-plane tensile strains above 2. , 2016, Optics express.

[17]  Krishna C. Saraswat,et al.  Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities. , 2015, Nano letters.

[18]  V. Reboud,et al.  Uniaxially stressed germanium with fundamental direct band gap , 2015, 1603.03454.

[19]  Jérôme Faist,et al.  1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications , 2015 .

[20]  Erich Kasper,et al.  Electrically pumped lasing from Ge Fabry-Perot resonators on Si. , 2015, Optics express.

[21]  Isabelle Sagnes,et al.  All‐Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities , 2015 .

[22]  Alban Gassenq,et al.  Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications , 2015, Photonics West - Optoelectronic Materials and Devices.

[23]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[24]  Krishna C. Saraswat,et al.  Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited] , 2014 .

[25]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[26]  J. Faist,et al.  Excess carrier lifetimes in Ge layers on Si , 2014 .

[27]  K. Saraswat,et al.  Strain-induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-tunable Band Profiles , 2022 .

[28]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[29]  Y. Niquet,et al.  Carrier mobility in strained Ge nanowires , 2012 .

[30]  Peter Friedli,et al.  Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain. , 2012, Physical review letters.

[31]  Weidong Zhou,et al.  Transfer-printed stacked nanomembrane lasers on silicon , 2012, Nature Photonics.

[32]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[33]  J Gobrecht,et al.  Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5% , 2012, Nature Communications.

[34]  I. Vurgaftman,et al.  Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. , 2011, Nature communications.

[35]  C. Nan,et al.  High-density magnetoresistive random access memory operating at ultralow voltage at room temperature , 2011, Nature communications.

[36]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[37]  Enge Wang,et al.  Atomistic modeling of electron-phonon coupling and transport properties in n-type [110] silicon nanowires , 2010 .

[38]  Bahram Jalali,et al.  Silicon photonics: Nonlinear optics in the mid-infrared , 2010 .

[39]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[40]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[41]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[42]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[43]  C. Tavernier,et al.  Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys , 2009, 0902.0491.

[44]  J. Boland,et al.  Ultimate-strength germanium nanowires. , 2006, Nano letters.

[45]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[46]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[47]  Y. Takano,et al.  Inter-valence-band electronic Raman scattering due to photoexcited holes inGe1−xSix , 2000 .

[48]  Mak,et al.  Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band-edge infrared excitation. , 1995, Physical review. B, Condensed matter.

[49]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[50]  Zhou,et al.  Femtosecond kinetics of photoexcited carriers in germanium. , 1994, Physical review. B, Condensed matter.

[51]  I. Gravé GaAs quantum well devices for detection and nonlinear optics in the mid-infrared , 1993 .

[52]  R. Soref,et al.  PREDICTED BAND GAP OF THE NEW SEMICONDUCTOR SIGESN , 1991 .

[53]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[54]  A. Ruoff On the ultimate yield strength of solids , 1978 .