Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1

[1]  R. Keep,et al.  Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters , 2022, Fluids and barriers of the CNS.

[2]  N. MacAulay,et al.  Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus , 2022, bioRxiv.

[3]  C. Rose,et al.  Cerebrospinal fluid formation is controlled by membrane transporters to modulate intracranial pressure , 2021, bioRxiv.

[4]  S. Hasselbalch,et al.  Elevated CSF inflammatory markers in patients with idiopathic normal pressure hydrocephalus do not promote NKCC1 hyperactivity in rat choroid plexus , 2021, Fluids and Barriers of the CNS.

[5]  Adam J Pawson,et al.  THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels , 2021, British journal of pharmacology.

[6]  N. Spratt,et al.  CSF Secretion Is Not Altered by NKCC1 Nor TRPV4 Antagonism in Healthy Rats , 2021, Brain sciences.

[7]  N. MacAulay Molecular mechanisms of brain water transport , 2021, Nature Reviews Neuroscience.

[8]  D. Riccobono,et al.  TRPV4 channel activation induces the transition of venous and arterial endothelial cells toward a pro‐inflammatory phenotype , 2021, Physiological reports.

[9]  N. MacAulay,et al.  TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel , 2021, Cells.

[10]  B. Blazer-Yost,et al.  TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus , 2020, JCI insight.

[11]  J. Simard,et al.  Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets , 2020, Nature Reviews Neurology.

[12]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[13]  B. Molyneaux,et al.  Modulation of brain cation-Cl− cotransport via the SPAK kinase inhibitor ZT-1a , 2020, Nature Communications.

[14]  John H. Zhang,et al.  Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways , 2020, Journal of neuroscience research.

[15]  Philip R. O. Payne,et al.  A protocol to evaluate RNA sequencing normalization methods , 2019, BMC Bioinformatics.

[16]  B. Blazer-Yost,et al.  Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. , 2019, American journal of physiology. Cell physiology.

[17]  J. Chun,et al.  LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction , 2019, Science Advances.

[18]  K. Kahle,et al.  The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases , 2019, Aging and disease.

[19]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[20]  Anushya Muruganujan,et al.  PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..

[21]  B. Blazer-Yost,et al.  Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. , 2018, American journal of physiology. Cell physiology.

[22]  C. Rose,et al.  Cotransporter-mediated water transport underlying cerebrospinal fluid formation , 2018, Nature Communications.

[23]  J. Simard,et al.  Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus , 2017, Nature Medicine.

[24]  N. MacAulay,et al.  When size matters: transient receptor potential vanilloid 4 channel as a volume‐sensor rather than an osmo‐sensor , 2017, The Journal of physiology.

[25]  H. Feng,et al.  Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights , 2017, Journal of the Neurological Sciences.

[26]  Xianming Deng,et al.  Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition , 2016, Science Signaling.

[27]  W. Löscher,et al.  The search for NKCC1-selective drugs for the treatment of epilepsy: Structure–function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A , 2016, Epilepsy & Behavior.

[28]  Benjamin J. Ainscough,et al.  High-performance web services for querying gene and variant annotation , 2016, Genome Biology.

[29]  J. Malm,et al.  Diagnosis and Treatment of Idiopathic Normal Pressure Hydrocephalus , 2016, Continuum.

[30]  V. Biousse,et al.  Headache arising from idiopathic changes in CSF pressure , 2015, The Lancet Neurology.

[31]  S. R. Snodgrass,et al.  A balanced view of choroid plexus structure and function: Focus on adult humans , 2015, Experimental Neurology.

[32]  D. Shin,et al.  Ca2+ is a Regulator of the WNK/OSR1/NKCC Pathway in a Human Salivary Gland Cell Line , 2015, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology.

[33]  K. Auguste,et al.  Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. , 2014, Journal of neurosurgery. Pediatrics.

[34]  Y. Yung,et al.  LPA receptor signaling: pharmacology, physiology, and pathophysiology , 2014, Journal of Lipid Research.

[35]  A. Yamanaka,et al.  Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1 , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  J. Gee,et al.  The Insight ToolKit image registration framework , 2014, Front. Neuroinform..

[37]  A. Pébay,et al.  Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes , 2014, Journal of Neuroinflammation.

[38]  Chunlei Wu,et al.  BioGPS and MyGene.info: organizing online, gene-centric information , 2012, Nucleic Acids Res..

[39]  K. Muraszko,et al.  Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage , 2012, Translational Stroke Research.

[40]  D. Van Roost,et al.  Endoscopic coagulation of choroid plexus hyperplasia. , 2012, Journal of neurosurgery. Pediatrics.

[41]  G. Mirone,et al.  Hydrocephalus in aqueductal stenosis , 2011, Child's Nervous System.

[42]  Y. Yung,et al.  Lysophosphatidic Acid Signaling May Initiate Fetal Hydrocephalus , 2011, Science Translational Medicine.

[43]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[44]  R. Lifton,et al.  Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. , 2010, Biochimica et biophysica acta.

[45]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[46]  J. Defalco,et al.  Identification and characterization of novel TRPV4 modulators. , 2009, Biochemical and biophysical research communications.

[47]  O. Sparrow,et al.  A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants , 2009, Cerebrospinal Fluid Research.

[48]  Lucille Beaudet,et al.  AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery , 2008 .

[49]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[50]  H. Arai,et al.  Expression patterns of the lysophospholipid receptor genes during mouse early development , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[51]  A. Ohtoshi,et al.  Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene , 2008, Cerebrospinal Fluid Research.

[52]  H. L. Rekate The definition and classification of hydrocephalus: a personal recommendation to stimulate debate , 2008, Cerebrospinal Fluid Research.

[53]  S. Constantini,et al.  The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices , 2006, Child's Nervous System.

[54]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[55]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[56]  Shizuo Oi,et al.  Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain , 2006, Child's Nervous System.

[57]  Marvin Bergsneider,et al.  Diagnosing Idiopathic Normal-pressure Hydrocephalus , 2005, Neurosurgery.

[58]  E. Delpire,et al.  Cation Chloride Cotransporters Interact with the Stress-related Kinases Ste20-related Proline-Alanine-rich Kinase (SPAK) and Oxidative Stress Response 1 (OSR1)* , 2002, The Journal of Biological Chemistry.

[59]  R. Taguchi,et al.  Serum Lysophosphatidic Acid Is Produced through Diverse Phospholipase Pathways* , 2002, The Journal of Biological Chemistry.

[60]  R. Corradini,et al.  Calcein-AM is a detector of intracellular oxidative activity , 2000, Histochemistry and Cell Biology.

[61]  A. Hudspeth,et al.  Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor , 2000, Cell.

[62]  R. Keep,et al.  Potassium cotransport at the rat choroid plexus. , 1994, The American journal of physiology.

[63]  S. Javaheri,et al.  Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. , 1993, The Journal of clinical investigation.

[64]  J. Volpe,et al.  A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. , 1984, Pediatrics.

[65]  H. Eisenberg,et al.  Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. , 1974, Journal of neurosurgery.

[66]  J. Sérot,et al.  A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.

[67]  Midori A. Harris,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm112 Databases and ontologies OBO-Edit—an ontology editor for biologists , 2007 .

[68]  R. Keep,et al.  Hydrocephalus in a rat model of intraventricular hemorrhage. , 2006, Acta neurochirurgica. Supplement.

[69]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[70]  T. Machida,et al.  Three-dimensional reconstructed MR imaging of the inner ear. , 1991, Radiology.