Optimization of electronic circuits

Several types of parameters influence the behaviour of electronic circuits and have to be taken into account when optimizing appropriate performance functions : design parameters, manufacturing process parameters, and operating parameters. The performance functions and the constraints can be costly and are subject to noise. For both the dependency on can be highly nonlinear. In this talk we will describe our in-house developed method for optimization and our experiences with that. Also some new directions for further research will be described. [ DOI : 10.1685/CSC06144] About DOI

[1]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[2]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[3]  Margaret H. Wright,et al.  What, if anything, is new in optimization? , 2000 .

[4]  Lawrence T. Pileggi,et al.  Asymptotic probability extraction for non-normal distributions of circuit performance , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[5]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[6]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[7]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[8]  W.C.M. van Beers,et al.  Kriging Metamodeling for Simulation , 2005 .

[9]  E. Salajegheh,et al.  Optimum design of trusses with discrete sizing and shape variables , 1993 .

[10]  Tamara G. Kolda,et al.  On the Convergence of Asynchronous Parallel Pattern Search , 2002, SIAM J. Optim..

[11]  J. Arora,et al.  Methods for optimization of nonlinear problems with discrete variables: A review , 1994 .

[12]  F. Jose,et al.  Convergence of Trust Region Augmented Lagrangian Methods Using Variable Fidelity Approximation Data , 1997 .

[13]  R.M.M. Mattheij,et al.  Adjoint transient sensitivity analysis in circuit simulation , 2007 .

[14]  A. Neumaier,et al.  A grid algorithm for bound constrained optimization of noisy functions , 1995 .

[15]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[16]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[17]  ter Ejw Jan Maten,et al.  Augmented Lagrangian Algorithm for Optimizing Analog Circuit Design , 2004 .

[18]  Helmut Graeb,et al.  On Parametric Test Design for Analog Integrated Circuits considering Error in Measurement and Stimulus , 2003 .

[19]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[20]  P. Rentrop,et al.  Modeling, Simulation, and Optimization of Integrated Circuits , 2003 .

[21]  Andrew R. Conn,et al.  JiffyTune: circuit optimization using time-domain sensitivities , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Jan A. Snyman,et al.  A pseudo-discrete rounding method for structural optimization , 1996 .

[23]  Hector A. Rosales-Macedo Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .

[24]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..