Comparison of deterministic and stochastic approaches to global optimization

In this paper, we compare two different approaches to nonconvex global optimization. The first one is a deterministic spatial Branch-and-Bound algorithm, whereas the second approach is a Quasi Monte Carlo (QMC) variant of a stochastic multi level single linkage (MLSL) algorithm. Both algorithms apply to problems in a very general form and are not dependent on problem structure. The test suite we chose is fairly extensive in scope, in that it includes constrained and unconstrained problems, continuous and mixed-integer problems. The conclusion of the tests is that in general the QMC variant of the MLSL algorithm is generally faster, although in some instances the Branch-and-Bound algorithm outperforms it.

[1]  L. Foulds,et al.  A bilinear approach to the pooling problem , 1992 .

[2]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[3]  F. Schoen TWO-PHASE METHODS FOR GLOBAL OPTIMIZATION , 2002 .

[4]  N. Sahinidis,et al.  A Lagrangian Approach to the Pooling Problem , 1999 .

[5]  Zelda B. Zabinsky,et al.  Stochastic Methods for Practical Global Optimization , 1998, J. Glob. Optim..

[6]  I. Sobol,et al.  On quasi-Monte Carlo integrations , 1998 .

[7]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[8]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[9]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[10]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[11]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[12]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[13]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[14]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[15]  Aimo A. Törn,et al.  Stochastic Global Optimization: Problem Classes and Solution Techniques , 1999, J. Glob. Optim..

[16]  Leo Liberti,et al.  Reduction constraints for the global optimization of NLPs , 2004 .

[17]  Marco Locatelli,et al.  A Note on the Griewank Test Function , 2003, J. Glob. Optim..

[18]  Efstratios N. Pistikopoulos,et al.  A Reduced Space Branch and Bound Algorithm for Global optimization , 1997, J. Glob. Optim..

[19]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[20]  Andrew Blake,et al.  Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction , 1989, IEEE Trans. Pattern Anal. Mach. Intell..