Electrical Engineering (Electronic Circuits and Systems)

[1]  R. Reszka,et al.  Pharmaceutical Evaluation of Gas-Filled Microparticles as Gene Delivery System , 2004, Pharmaceutical Research.

[2]  Robert Langer,et al.  New frontiers in nanotechnology for cancer treatment. , 2008, Urologic oncology.

[3]  Raffi Bekeredjian,et al.  Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. , 2005, Ultrasound in medicine & biology.

[4]  Kanaka Hettiarachchi,et al.  Controllable microfluidic synthesis of multiphase drug‐carrying lipospheres for site‐targeted therapy , 2009, Biotechnology progress.

[5]  Chris A Flask,et al.  Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. , 2008, Biomaterials.

[6]  Jason R McCarthy,et al.  The future of theranostic nanoagents. , 2009, Nanomedicine.

[7]  F Forsberg,et al.  Parenchymal enhancement and tumor visualization using a new sonographic contrast agent. , 1995, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[8]  B. Bonnemain,et al.  Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. , 1998, Journal of drug targeting.

[9]  B S Worthington,et al.  Nuclear Magnetic Resonance (NMR) Tomography of the Brain: A Preliminary Clinical Assessment with Demonstration of Pathology , 1980, Journal of computer assisted tomography.

[10]  R K Jain,et al.  Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Shuming Nie,et al.  Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. , 2008, Journal of the American Chemical Society.

[12]  Erkki Ruoslahti,et al.  Targeted quantum dot conjugates for siRNA delivery. , 2007, Bioconjugate chemistry.

[13]  James R Heath,et al.  Nanotechnology and cancer. , 2008, Annual review of medicine.

[14]  Katherine W Ferrara,et al.  Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. , 2009, Accounts of chemical research.

[15]  H. Sato,et al.  Transparent chamber in the rat skin for studies on microcirculation in cancer tissue. , 1971, Gan.

[16]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[17]  G. Whitesides,et al.  Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. , 2006, Lab on a chip.

[18]  Armin Thron,et al.  Diagnostic Accuracy of MRI Compared to CCT in Patients with Brain Metastases , 2004, Journal of Neuro-Oncology.

[19]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[20]  M. Makale Intravital imaging and cell invasion. , 2007, Methods in enzymology.

[21]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[22]  Robert M Hoffman,et al.  A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. , 2003, The Journal of surgical research.

[23]  Brigitte Vollmar,et al.  Viewing the Microcirculation through the Window: Some Twenty Years Experience with the Hamster Dorsal Skinfold Chamber , 2002, European Surgical Research.

[24]  Anna Moore,et al.  In vivo imaging of siRNA delivery and silencing in tumors , 2007, Nature Medicine.

[25]  G Gregoriadis,et al.  Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. , 1991, Biochimica et biophysica acta.

[26]  J. Riess,et al.  Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. , 2003, Angewandte Chemie.

[27]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[28]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[29]  Michael J Sailor,et al.  Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. , 2008, Angewandte Chemie.

[30]  A. Buzaid,et al.  Phase II trial of doxil for patients with metastatic melanoma refractory to frontline therapy. , 1999, Oncology reports.

[31]  J. Mintorovitch,et al.  Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths , 2005, Investigative radiology.

[32]  Jinming Gao,et al.  Multifunctional Micellar Nanomedicine for Cancer Therapy , 2009, Experimental biology and medicine.

[33]  I. Tannock,et al.  Drug penetration in solid tumours , 2006, Nature Reviews Cancer.

[34]  Robert M Hoffman,et al.  Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. , 2003, Cancer research.

[35]  R. Apfel,et al.  Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. , 1991, Ultrasound in medicine & biology.

[36]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[37]  Eleanor Stride,et al.  Novel preparation techniques for controlling microbubble uniformity: a comparison , 2009, Medical & Biological Engineering & Computing.

[38]  Ronald A. Roy,et al.  Acoustic microcavitation: its active and passive acoustic detection. , 1991, The Journal of the Acoustical Society of America.

[39]  K. Messmer,et al.  Technical report—a new chamber technique for microvascular studies in unanesthetized hamsters , 1980, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie.

[40]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[41]  Michael Reinhardt,et al.  Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. , 2005, Radiology.

[42]  Xiaobo Chen,et al.  Semiconductor quantum dots for photodynamic therapy. , 2003, Journal of the American Chemical Society.

[43]  Paul A Dayton,et al.  On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. , 2007, Lab on a chip.

[44]  Miqin Zhang,et al.  Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[45]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[46]  Jinming Gao,et al.  Theranostic nanomedicine for cancer. , 2008, Nanomedicine.

[47]  F. Mckenzie,et al.  A titanium rabbit ear chamber: assembly, insertion and results. , 1970, Microvascular research.

[48]  Wei Lu,et al.  Tumor Site–Specific Silencing ofNF-κB p65by Targeted Hollow Gold Nanosphere–Mediated Photothermal Transfection , 2010, Cancer Research.

[49]  Jean-Pierre Benoit,et al.  Parameters influencing the stealthiness of colloidal drug delivery systems. , 2006, Biomaterials.

[50]  C. Marianecci,et al.  Solid lipid nanoparticles incorporated in dextran hydrogels: a new drug delivery system for oral formulations. , 2006, International journal of pharmaceutics.

[51]  R. Shohet,et al.  DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. , 2002, Ultrasound in medicine & biology.

[52]  Jinwoo Cheon,et al.  All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. , 2009, Angewandte Chemie.

[53]  Siqing Shan,et al.  Noninvasive visualization of tumors in rodent dorsal skin window chambers , 1999, Nature Biotechnology.

[54]  Pallab Pradhan,et al.  Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[55]  G. H. Algire An Adaptation of the Transparent-Chamber Technique to the Mouse , 1943 .

[56]  Maximilian Reiser,et al.  Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[57]  Natalia Farkas,et al.  Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[58]  H. Estrade-szwarckopf,et al.  Passivation mechanisms in cryogenic SF6/O2 etching process , 2004 .

[59]  Hua Ai,et al.  Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. , 2006, Nano letters.

[60]  A. Anagnostopoulos,et al.  The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia , 2005, Leukemia & lymphoma.

[61]  E. López,et al.  Effects of membrane composition and lipid structure on the photopolymerization of lipid diacetylenes in bilayer membranes. , 1982, Biochimica et biophysica acta.

[62]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[63]  Stefaan C De Smedt,et al.  Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[64]  George M. Whitesides,et al.  Formation of monodisperse bubbles in a microfluidic flow-focusing device , 2004 .

[65]  E. Zubarev,et al.  Paclitaxel-functionalized gold nanoparticles. , 2007, Journal of the American Chemical Society.

[66]  Remi Dussart,et al.  SiOxFy passivation layer in silicon cryoetching , 2005 .

[67]  E. Unger,et al.  Local drug and gene delivery through microbubbles. , 2001, Progress in cardiovascular diseases.

[68]  P. Branemark,et al.  Microcirculatory Studies in Man By High Resolution Vital Microscopy , 1964, Angiology.

[69]  Jiri Sklenar,et al.  Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[70]  Srikanth Pilla,et al.  Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. , 2009, Biomaterials.

[71]  Y. Jeong,et al.  Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer. , 2000, International journal of pharmaceutics.

[72]  Ralph Weissleder,et al.  Nanoparticle imaging of integrins on tumor cells. , 2006, Neoplasia.

[73]  MRI versus 64-row MDCT for diagnosis of hepatocellular carcinoma. , 2009, World journal of gastroenterology.

[74]  J. Sandison,et al.  A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear , 1924 .

[75]  Y Wu,et al.  Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. , 1998, Investigative radiology.

[76]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[77]  R. Vandenbroucke,et al.  Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. , 2008, Journal of Controlled Release.

[78]  D O Cosgrove,et al.  Microbubble contrast agents: a new era in ultrasound , 2001, BMJ : British Medical Journal.

[79]  Sangjin Park,et al.  Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. , 2008, Angewandte Chemie.

[80]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[81]  Eleanor Stride,et al.  Novel microbubble preparation technologies , 2008 .

[82]  Joe T. Lin,et al.  Tissue window chamber system for validation of implanted oxygen sensors. , 2003, American journal of physiology. Heart and circulatory physiology.

[83]  A. Nakano Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic. , 2002, Cell structure and function.

[84]  Katherine W Ferrara,et al.  Therapeutic effects of paclitaxel-containing ultrasound contrast agents. , 2006, Ultrasound in medicine & biology.

[85]  H. Hofmann,et al.  Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system , 2005 .

[86]  Yoichiro Matsumoto,et al.  Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue , 2005, European Radiology.

[87]  A. Sanders,et al.  Vascular Patterns of Four Transplantable Tumors in the Hamster (Mesocricetus Auratus) , 1965, Angiology.

[88]  J. Gross,et al.  A transparent access chamber for the rat dorsal skin fold. , 1979, Microvascular research.

[89]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[90]  Shuming Nie,et al.  Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. , 2008, Journal of the American Chemical Society.

[91]  Risto Kostiainen,et al.  Selective surface patterning with an electric discharge in the fabrication of microfluidic structures. , 2008, Angewandte Chemie.

[92]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[93]  M J Hawkins,et al.  Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[94]  H. Hricak,et al.  Molecular MR imaging in oncology. , 2005, Magnetic resonance imaging clinics of North America.

[95]  A. Padhani Dynamic contrast‐enhanced MRI in clinical oncology: Current status and future directions , 2002, Journal of magnetic resonance imaging : JMRI.

[96]  Dar-Bin Shieh,et al.  Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles. , 2009, Journal of the American Chemical Society.

[97]  J A Rowlands,et al.  Towards new functional nanostructures for medical imaging. , 2008, Medical physics.

[98]  Gang Bao,et al.  Magnetic nanoparticle probes , 2005 .

[99]  Peter T. C. So,et al.  Two‐photon Fluorescence Light Microscopy , 2001 .

[100]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[101]  E. Unger,et al.  Therapeutic applications of lipid-coated microbubbles. , 2004, Advanced drug delivery reviews.

[102]  Shuming Nie,et al.  Understanding and overcoming major barriers in cancer nanomedicine. , 2010, Nanomedicine.

[103]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[104]  R. Busse,et al.  Vascular Gene Transfer of Phosphomimetic Endothelial Nitric Oxide Synthase (S1177D) Using Ultrasound-Enhanced Destruction of Plasmid-Loaded Microbubbles Improves Vasoreactivity , 2002, Circulation.

[105]  Veikko Lindroos,et al.  Handbook of Silicon Based MEMS Materials and Technologies , 2020 .

[106]  Peter Enoksson,et al.  Micromachined flow-through filter-chamber for chemical reactions on beads , 2000 .

[107]  Shelton D Caruthers,et al.  Magnetic resonance molecular imaging with nanoparticles , 2004, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[108]  Alex M. Fichtenholtz,et al.  Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. , 2006, Small.

[109]  R. T. Klingbiel,et al.  Preparation and Characterization of Polymerized Liposomes , 1985, Annals of the New York Academy of Sciences.

[110]  Valérie Cabuil,et al.  Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. , 2005, Journal of the American Chemical Society.

[111]  H. Klocker,et al.  Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours , 2006, The Journal of Steroid Biochemistry and Molecular Biology.

[112]  L. Lo,et al.  Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release , 2009, Nanotechnology.

[113]  R Kompfner,et al.  Resonant scanning optical microscope. , 1978, Applied optics.

[114]  Younan Xia,et al.  Gold nanocages as photothermal transducers for cancer treatment. , 2010, Small.

[115]  K. Messmer,et al.  Dorsal skinfold chamber technique for intravital microscopy in nude mice. , 1993, The American journal of pathology.

[116]  T C Skalak,et al.  Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. , 1998, Circulation.

[117]  Toshiro Higuchi,et al.  Droplet formation in a microchannel network. , 2002, Lab on a chip.

[118]  G. Whitesides,et al.  Microfabrication meets microbiology , 2007, Nature Reviews Microbiology.

[119]  Ralph Weissleder,et al.  Multifunctional magnetic nanoparticles for targeted imaging and therapy. , 2008, Advanced drug delivery reviews.

[120]  C. Alexiou,et al.  Locoregional cancer treatment with magnetic drug targeting. , 2000, Cancer research.

[121]  K Messmer,et al.  A novel technique for studies on the microvasculature of transplanted islets of Langerhans in vivo. , 1990, International journal of microcirculation, clinical and experimental.

[122]  Chenjie Xu,et al.  Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. , 2009, Journal of the American Chemical Society.

[123]  M. Lück,et al.  Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. , 1998, Journal of biomedical materials research.

[124]  S. Kaul,et al.  Recent advances in myocardial contrast echocardiography. , 1997, Current opinion in cardiology.

[125]  D. Lasič LIPOSOMES in GENE DELIVERY , 1997 .

[126]  Hairong Zheng,et al.  Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[127]  Weiwei Guo,et al.  Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. , 2009, Analytical chemistry.

[128]  Sanjiv Kaul,et al.  Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. , 2003, Ultrasound in medicine & biology.

[129]  Scott E McNeil,et al.  Nanotechnology safety concerns revisited. , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[130]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.