Universality Classes for Domain Wall Motion in the Ferromagnetic Semiconductor (Ga,Mn)As

Magnetic domain wall motion induced by magnetic fields and spin-polarized electrical currents is experimentally well established. A full understanding of the underlying mechanisms, however, remains elusive. For the ferromagnetic semiconductor (Ga,Mn)As, we have measured and compared such motions in the thermally activated subthreshold, or “creep,” regime, where the velocity obeys an Arrhenius scaling law. Within this law, the clearly different exponents of the current and field reflect different universality classes, showing that the drive mechanisms are fundamentally different.

[1]  Luc Thomas,et al.  Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. , 2006, Physical review letters.

[2]  R. Duine,et al.  Thermally assisted current-driven domain-wall motion. , 2006, Physical review letters.

[3]  A. Brataas,et al.  Giant current-driven domain wall mobility in (Ga,Mn)As. , 2006, Physical review letters.

[4]  H. Ohno,et al.  Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. , 2006, Physical review letters.

[5]  M. Stiles,et al.  Spin-transfer torque for continuously variable magnetization , 2006, cond-mat/0601172.

[6]  A. Brataas,et al.  Current-induced magnetization dynamics in disordered itinerant ferromagnets , 2005, cond-mat/0512715.

[7]  T. Giamarchi,et al.  Dynamics of Disordered Elastic Systems , 2005, cond-mat/0503437.

[8]  W Wernsdorfer,et al.  Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. , 2005, Physical review letters.

[9]  Eiji Saitoh,et al.  Current-induced resonance and mass determination of a single magnetic domain wall , 2004, Nature.

[10]  G. Tatara,et al.  Universality of thermally assisted magnetic domain-wall motion under spin torque , 2004, cond-mat/0411250.

[11]  C. Chappert,et al.  Creep motion of a magnetic wall: Avalanche size divergence , 2004 .

[12]  S. Maekawa,et al.  Current-spin coupling for ferromagnetic domain walls in fine wires. , 2004, Physical review letters.

[13]  Yoshishige Suzuki,et al.  Micromagnetic understanding of current-driven domain wall motion in patterned nanowires , 2004, cond-mat/0407628.

[14]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[15]  H. Ohno,et al.  Current-induced domain-wall switching in a ferromagnetic semiconductor structure , 2004, Nature.

[16]  C. Chappert,et al.  Domain wall creep in magnetic wires. , 2004, Physical review letters.

[17]  G. Tatara,et al.  Theory of current-driven domain wall motion: spin transfer versus momentum transfer. , 2004, Physical review letters.

[18]  S. Nasu,et al.  Real-space observation of current-driven domain wall motion in submicron magnetic wires. , 2003, Physical review letters.

[19]  R. Cowburn,et al.  Domain wall propagation in magnetic nanowires by spin-polarized current injection , 2003, cond-mat/0304549.

[20]  T. Dietl,et al.  Magnetic domains in III-V magnetic semiconductors , 2001, cond-mat/0107009.

[21]  D. Weller,et al.  Stable ultrahigh-density magneto-optical recordings using introduced linear defects , 2001, Nature.

[22]  H. Ohno,et al.  Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors , 2000, cond-mat/0007190.

[23]  P. L. Doussal,et al.  Creep and depinning in disordered media , 2000, cond-mat/0002299.

[24]  C. Chappert,et al.  DOMAIN WALL CREEP IN AN ISING ULTRATHIN MAGNETIC FILM , 1998 .

[25]  L. Berger,et al.  Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films , 1984 .

[26]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[27]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .