Hyperspectral Remote Sensing Data Analysis and Future Challenges

Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.

[1]  Bernhard Schölkopf,et al.  Remote Sensing Feature Selection by Kernel Dependence Measures , 2010, IEEE Geoscience and Remote Sensing Letters.

[2]  Antonio J. Plaza,et al.  GPU Implementation of an Automatic Target Detection and Classification Algorithm for Hyperspectral Image Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.

[3]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[4]  S. Liang,et al.  A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies , 2005 .

[5]  Nasser M. Nasrabadi,et al.  A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery , 2007, SPIE Defense + Commercial Sensing.

[6]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[8]  Chein-I Chang,et al.  A New Growing Method for Simplex-Based Endmember Extraction Algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Koen C. Mertens,et al.  A sub‐pixel mapping algorithm based on sub‐pixel/pixel spatial attraction models , 2006 .

[10]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Julien Mairal,et al.  Convex and Network Flow Optimization for Structured Sparsity , 2011, J. Mach. Learn. Res..

[12]  Trac D. Tran,et al.  Kernel sparse representation for hyperspectral target detection , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Frédéric Baret,et al.  Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements , 1997 .

[14]  Ye Zhang,et al.  Integration of Spatial–Spectral Information for Resolution Enhancement in Hyperspectral Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Alan R. Gillespie,et al.  Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Jocelyn Chanussot,et al.  Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Pablo J. Zarco-Tejada,et al.  Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Guangyi Chen,et al.  Enhancing Spatial Resolution of Hyperspectral Imagery Using Sensor's Intrinsic Keystone Distortion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Jocelyn Chanussot,et al.  Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Aleksandra Pizurica,et al.  Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[22]  José M. Bioucas-Dias,et al.  Hyperspectral Unmixing Based on Mixtures of Dirichlet Components , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[23]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[24]  Gustavo Camps-Valls,et al.  Semisupervised Classification of Remote Sensing Images With Active Queries , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Daniel Schläpfer,et al.  Cluster versus grid for operational generation of ATCOR's modtran-based look up tables , 2008, Parallel Comput..

[26]  Naoto Yokoya,et al.  Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[29]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[31]  James Theiler,et al.  Improved matched-filter detection techniques , 1999, Optics & Photonics.

[32]  Chong-Yung Chi,et al.  A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing , 2009, IEEE Trans. Signal Process..

[33]  X. Jia,et al.  Progressive Two-Class Decision Classifier for Optimization of Class Discriminations , 1998 .

[34]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[35]  Antonio J. Plaza,et al.  FPGA Implementation of the N-FINDR Algorithm for Remotely Sensed Hyperspectral Image Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[36]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[38]  Francesca Bovolo,et al.  A Novel Technique for Subpixel Image Classification Based on Support Vector Machine , 2010, IEEE Transactions on Image Processing.

[39]  Luis Gómez-Chova,et al.  Remote Sensing Image Processing , 2011, Remote Sensing Image Processing.

[40]  Aleixandre Verger,et al.  Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations , 2011 .

[41]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[42]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[43]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Michael E. Schaepman,et al.  Unmixing-Based Landsat TM and MERIS FR Data Fusion , 2008, IEEE Geoscience and Remote Sensing Letters.

[45]  Subhasis Chaudhuri,et al.  A novel approach to quantitative evaluation of hyperspectral image fusion techniques , 2013, Inf. Fusion.

[46]  José M. Bioucas-Dias,et al.  Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[47]  Amit Banerjee,et al.  Kernel Methods for Unmixing Hyperspectral Imagery , 2009 .

[48]  Rob Heylen,et al.  Calculation of Geodesic Distances in Nonlinear Mixing Models: Application to the Generalized Bilinear Model , 2012, IEEE Geoscience and Remote Sensing Letters.

[49]  Mikhail F. Kanevski,et al.  A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification , 2011, IEEE Journal of Selected Topics in Signal Processing.

[50]  Trac D. Tran,et al.  Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[51]  Paul Scheunders,et al.  Enhanced Visualization of Hyperspectral Images , 2011, IEEE Geoscience and Remote Sensing Letters.

[52]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[53]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[54]  Francesca Bovolo,et al.  Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Antonio J. Plaza,et al.  An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations , 2008, Parallel Comput..

[56]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Antonio J. Plaza,et al.  Collaborative Sparse Regression for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Lorenzo Bruzzone,et al.  A Batch-Mode Active Learning Technique Based on Multiple Uncertainty for SVM Classifier , 2012, IEEE Geoscience and Remote Sensing Letters.

[59]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[60]  Jon Atli Benediktsson,et al.  Multiple Spectral–Spatial Classification Approach for Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Ye Zhang,et al.  Enhanced Self-Training Superresolution Mapping Technique for Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[62]  Lorenzo Bruzzone,et al.  Mean Map Kernel Methods for Semisupervised Cloud Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[64]  Antonio J. Plaza,et al.  Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[65]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[66]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[67]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[69]  José M. F. Moura,et al.  Hyperspectral imagery: Clutter adaptation in anomaly detection , 2000, IEEE Trans. Inf. Theory.

[70]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[71]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[72]  D. Böhning Multinomial logistic regression algorithm , 1992 .

[73]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Roi Méndez-Rial,et al.  Accurate Implementation of Anisotropic Diffusion in the Hypercube , 2010, IEEE Geoscience and Remote Sensing Letters.

[75]  F. Baret,et al.  Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .

[76]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[77]  José M. Bioucas-Dias,et al.  Does independent component analysis play a role in unmixing hyperspectral data? , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Alan P. Schaum,et al.  Application of stochastic mixing models to hyperspectral detection problems , 1997, Defense, Security, and Sensing.

[79]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Antonio J. Plaza,et al.  Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units , 2011, Concurr. Comput. Pract. Exp..

[81]  Russell C. Hardie,et al.  Hyperspectral Change Detection in the Presenceof Diurnal and Seasonal Variations , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[83]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[84]  Jiang Li,et al.  Wavelets for computationally efficient hyperspectral derivative analysis , 2001, IEEE Trans. Geosci. Remote. Sens..

[85]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[86]  Melba M. Crawford,et al.  Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[87]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[88]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[89]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[91]  Lorenzo Bruzzone,et al.  A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[92]  Lorenzo Bruzzone,et al.  Extended profiles with morphological attribute filters for the analysis of hyperspectral data , 2010 .

[93]  Robert W. Basedow,et al.  HYDICE system: implementation and performance , 1995, Defense, Security, and Sensing.

[94]  Yifan Zhang,et al.  Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[95]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[96]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[97]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[98]  Santiago Velasco-Forero,et al.  Improving Hyperspectral Image Classification Using Spatial Preprocessing , 2009, IEEE Geoscience and Remote Sensing Letters.

[99]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[100]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[101]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[102]  Antonio J. Plaza,et al.  FPGA Implementation of Abundance Estimation for Spectral Unmixing of Hyperspectral Data Using the Image Space Reconstruction Algorithm , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[103]  M. Schaepman,et al.  Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data , 2008 .

[104]  Yuliya Tarabalka,et al.  Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing , 2009, Journal of Real-Time Image Processing.

[105]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[106]  Jon Atli Benediktsson,et al.  Morphological Attribute Profiles for the Analysis of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[107]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[108]  S. Gopal,et al.  Remote sensing of forest change using artificial neural networks , 1996, IEEE Trans. Geosci. Remote. Sens..

[109]  David W. J. Stein Stochastic compositional models applied to subpixel analysis of hyperspectral imagery , 2002, SPIE Optics + Photonics.

[110]  R. Trautner ESA's Roadmap for Next Generation Payload Data Procesors , 2011 .

[111]  Melba M. Crawford,et al.  Active Learning via Multi-View and Local Proximity Co-Regularization for Hyperspectral Image Classification , 2011, IEEE Journal of Selected Topics in Signal Processing.

[112]  Jane R. Foster,et al.  Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[113]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[114]  J. Nichol,et al.  Improved forest biomass estimates using ALOS AVNIR-2 texture indices , 2011 .

[115]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[116]  Gustavo Camps-Valls,et al.  Semisupervised Remote Sensing Image Classification With Cluster Kernels , 2009, IEEE Geoscience and Remote Sensing Letters.

[117]  Yifan Zhang,et al.  A Bayesian Restoration Approach for Hyperspectral Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[118]  Antonio J. Plaza,et al.  Special issue on architectures and techniques for real-time processing of remotely sensed images , 2009, Journal of Real-Time Image Processing.

[119]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[120]  Max Mignotte,et al.  A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[121]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[122]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[123]  Chris J. Willis,et al.  Comparison of anomaly detection methods for hyperspectral imagery , 2005, SPIE Security + Defence.

[124]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[125]  Jason Weston,et al.  Semisupervised Neural Networks for Efficient Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[126]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[127]  Gustavo Camps-Valls,et al.  Efficient Kernel Orthonormalized PLS for Remote Sensing Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[128]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .

[129]  Chein-I Chang,et al.  High Performance Computing in Remote Sensing , 2007, HiPC 2007.

[130]  A. Schaum Joint subspace detection of hyperspectral targets , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[131]  Jean-Yves Tourneret,et al.  Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery , 2012, IEEE Transactions on Image Processing.

[132]  Heesung Kwon,et al.  A Comparative Analysis of Kernel Subspace Target Detectors for Hyperspectral Imagery , 2007, EURASIP J. Adv. Signal Process..

[133]  Liangpei Zhang,et al.  A super-resolution reconstruction algorithm for hyperspectral images , 2012, Signal Process..

[134]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[135]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[136]  Rob Heylen,et al.  Non-Linear Spectral Unmixing by Geodesic Simplex Volume Maximization , 2011, IEEE Journal of Selected Topics in Signal Processing.

[137]  Gustavo Camps-Valls,et al.  Urban Image Classification With Semisupervised Multiscale Cluster Kernels , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[138]  Mehrdad Soumekh,et al.  Hyperspectral anomaly detection within the signal subspace , 2006, IEEE Geoscience and Remote Sensing Letters.

[139]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2004, IEEE Transactions on Image Processing.

[140]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .

[141]  Edward A. Ashton,et al.  Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier , 1998, IEEE Trans. Geosci. Remote. Sens..

[142]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[143]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[144]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[145]  Li Ma,et al.  Local Manifold Learning-Based $k$ -Nearest-Neighbor for Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[146]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[147]  Liangpei Zhang,et al.  Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[148]  Subhasis Chaudhuri,et al.  An Optimization-Based Approach to Fusion of Hyperspectral Images , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[149]  Amit Banerjee,et al.  A support vector method for anomaly detection in hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[150]  Scott Hauck,et al.  The roles of FPGAs in reprogrammable systems , 1998, Proc. IEEE.

[151]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[152]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[153]  Alan P. Schaum,et al.  Subclutter target detection using sequences of thermal infrared multispectral imagery , 1997, Defense, Security, and Sensing.

[154]  Antonio J. Plaza,et al.  Parallel Morphological Endmember Extraction Using Commodity Graphics Hardware , 2007, IEEE Geoscience and Remote Sensing Letters.

[155]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[156]  Mark J. Carlotto,et al.  A cluster-based approach for detecting man-made objects and changes in imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[157]  Antonio Plaza,et al.  Recent Developments in Endmember Extraction and Spectral Unmixing , 2011 .

[158]  Antonio J. Plaza,et al.  The Promise of Reconfigurable Computing for Hyperspectral Imaging Onboard Systems: A Review and Trends , 2013, Proceedings of the IEEE.

[159]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[160]  Jianglin Ma,et al.  Superresolution Enhancement of Hyperspectral CHRIS/Proba Images With a Thin-Plate Spline Nonrigid Transform Model , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[161]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[162]  James Lewis Keef,et al.  Hyper-spectral sensor calibration extrapolated from multi-spectral measurements , 2008 .

[163]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[164]  Antonio J. Plaza,et al.  Parallel Hyperspectral Image and Signal Processing [Applications Corner] , 2011, IEEE Signal Processing Magazine.

[165]  Jean-Yves Tourneret,et al.  Bayesian separation of spectral sources under non-negativity and full additivity constraints , 2009, Signal Process..

[166]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[167]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[168]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[169]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[170]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[171]  Ryan Close,et al.  Endmember and proportion estimation using physics-based macroscopic and microscopic mixture models , 2011 .

[172]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[173]  Qian Du,et al.  Fast real-time onboard processing of hyperspectral imagery for detection and classification , 2009, Journal of Real-Time Image Processing.

[174]  Maya R. Gupta,et al.  Design goals and solutions for display of hyperspectral images , 2005, IEEE International Conference on Image Processing 2005.

[175]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[176]  J. Benediktsson,et al.  Semi-Supervised Self Learning for Hyperspectral Image Classification , 2012 .

[177]  Chein-I Chang,et al.  Hyperspectral Data Exploitation , 2007 .

[178]  Paul D. Gader,et al.  Sparsity Promoting Iterated Constrained Endmember Detection in Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[179]  Mohammad Alam,et al.  Superresolution Construction of Multispectral Imagery Based on Local Enhancement , 2008, IEEE Geoscience and Remote Sensing Letters.

[180]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[181]  Chong-Yung Chi,et al.  A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[182]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[183]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[184]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[185]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[186]  Caroline Fossati,et al.  Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.