Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule

[1]  A. Weinstein A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT. , 2005, American journal of physiology. Renal physiology.

[2]  V. Vallon,et al.  Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. , 2005, The Journal of clinical investigation.

[3]  R. Lifton,et al.  Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch , 2005, Trends in Endocrinology & Metabolism.

[4]  G. Giebisch,et al.  Paracellular Cl- permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Meneton,et al.  Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome. , 2004, Journal of the American Society of Nephrology : JASN.

[6]  J. Schnermann,et al.  Plasma renin in mice with one or two renin genes. , 2004, Acta physiologica Scandinavica.

[7]  M. Shaharabany,et al.  Hypercalciuria in familial hyperkalemia and hypertension accompanies hyperkalemia and precedes hypertension: description of a large family with the Q565E WNK4 mutation. , 2004, The Journal of clinical endocrinology and metabolism.

[8]  S. Sasaki,et al.  Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Lifton,et al.  WNK4 regulates apical and basolateral Cl– flux in extrarenal epithelia , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Antonarakis,et al.  Linearization and purification of BAC DNA for the development of transgenic mice , 1999, Transgenic Research.

[11]  J. Norris,et al.  Genome scan linkage results for longitudinal systolic blood pressure phenotypes in subjects from the Framingham Heart Study , 2003, BMC Genetics.

[12]  G. Giebisch,et al.  WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion , 2003, Nature Genetics.

[13]  A. McMahon,et al.  Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. , 2003, The Journal of clinical investigation.

[14]  D. Ellison,et al.  WNK kinases regulate thiazide-sensitive Na-Cl cotransport. , 2003, The Journal of clinical investigation.

[15]  R. Lifton,et al.  Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Knepper,et al.  Targeted Proteomic Profiling of Renal Na+ Transporter and Channel Abundances in Angiotensin II Type 1a Receptor Knockout Mice , 2002, Hypertension.

[17]  V. Valderrábano,et al.  Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. , 2001, American journal of physiology. Renal physiology.

[18]  Robert J. Unwin,et al.  Human Hypertension Caused by Mutations in WNK Kinases , 2001, Science.

[19]  Ali G. Gharavi,et al.  Molecular Mechanisms of Human Hypertension , 2001, Cell.

[20]  M. Lalioti,et al.  A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli. , 2001, Nucleic acids research.

[21]  Anita L. DeStefano,et al.  Evidence for a Gene Influencing Blood Pressure on Chromosome 17: Genome Scan Linkage Results for Longitudinal Blood Pressure Phenotypes in Subjects From the Framingham Heart Study , 2000, Hypertension.

[22]  D. Ellison,et al.  Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. , 2000, Physiological reviews.

[23]  G. H. Kim,et al.  The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Doetschman,et al.  Phenotype Resembling Gitelman’s Syndrome in Mice Lacking the Apical Na+-Cl− Cotransporter of the Distal Convoluted Tubule* , 1998, The Journal of Biological Chemistry.

[25]  G. Giebisch,et al.  Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. , 1996, The American journal of physiology.

[26]  Bernard C. Rossier,et al.  Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 , 1996, Nature Genetics.

[27]  R. Lifton,et al.  Gitelman's variant of Barter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter , 1996, Nature Genetics.

[28]  L. Lind,et al.  Calcium metabolism and sodium sensitivity in hypertensive subjects. , 1993, Journal of human hypertension.

[29]  T. Saruta,et al.  Disturbed calcium metabolism in offspring of hypertensive parents. , 1992, Hypertension.

[30]  S. Kaname,et al.  [Gordon's syndrome]. , 1992, Nihon rinsho. Japanese journal of clinical medicine.

[31]  R. Gordon The syndrome of hypertension and hyperkalemia with normal glomerular filtration rate: Gordon's syndrome. , 1986, Australian and New Zealand journal of medicine.

[32]  S. Mujais,et al.  Angiotensin II binding sites in individual segments of the rat nephron. , 1986, The Journal of clinical investigation.

[33]  S. Bachmann,et al.  Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. , 1985, The American journal of physiology.

[34]  M. Schambelan,et al.  Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. , 1981, Kidney international.

[35]  G. Pauline,et al.  HYPERTENSION AND HYPERPOTASSÆMIA WITHOUT RENAL DISEASE IN A YOUNG MALE , 1964, The Medical journal of Australia.