Live Geoinformation with Standardized Geoprocessing Services

To realize live geoinformation, which is about providing information as soon as it is available, new approaches for instant geoprocessing and efficient resource utilization are required. Currently, such geoprocessing on the web is handled sequentially instead. This article describes a new approach by processing geodata streams and thereby enabling a continuous processing for improved resource utilization rates. In particular, this work applies HTTP Live Streaming for example of standardized geoprocessing services. The approach is evaluated for processing a large volume datasets of OpenStreetMap data. The presented implementation is based on Free and Open Source software.

[1]  Michael F. Goodchild,et al.  Defining a Digital Earth System , 2008, Trans. GIS.

[2]  P. V. Oosterom Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP- face Tree and GAP-edge Forest , 2005 .

[3]  Theodor Foerster,et al.  Geospatial Web Services for Distributed Processing: Applications and Scenarios , 2011 .

[4]  Aijun Chen,et al.  The Integration of Grid Technology with OGC Web Services (OWS) in NWGISS for NASA EOS Data , 2003 .

[5]  Alexander Zipf,et al.  Towards Standards-Based Processing of Digital Elevation Models for Grid Computing through Web Processing Service (WPS) , 2008, ICCSA.

[6]  Frank Leymann,et al.  Web Services , 2004, Informatik-Spektrum.

[7]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[8]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[9]  David M. Mark,et al.  Next-Generation Digital Earth: A position paper from the Vespucci Initiative for the Advancement of Geographic Information Science , 2008, Int. J. Spatial Data Infrastructures Res..

[10]  Henning Schulzrinne,et al.  RTP: A Transport Protocol for Real-Time Applications , 1996, RFC.

[11]  Alan F. Lippman,et al.  Video coding for streaming media delivery on the Internet , 2001, IEEE Trans. Circuits Syst. Video Technol..

[12]  A. Gore The digital earth : Understanding our planet in the 21st century , 1998 .

[13]  Theodor Foerster,et al.  Matching INSPIRE Quality of Service Requirements with Hybrid Clouds , 2011 .

[14]  Huadong Guo,et al.  Next-generation Digital Earth , 2012, Proceedings of the National Academy of Sciences.

[15]  Simon Jirka,et al.  Event Processing in Sensor Webs , 2009 .

[16]  T. Foerster,et al.  Towards a research agenda for geoprocessing services , 2009 .

[17]  Ralf Klamma,et al.  Evaluating Performance in Spatial Data Infrastructures for Geoprocessing , 2006, IEEE Internet Computing.

[18]  Matthias S. Müller,et al.  Moving Code in Spatial Data Infrastructures – Web Service Based Deployment of Geoprocessing Algorithms , 2010 .

[19]  Mark Claypool,et al.  Characteristics of streaming media stored on the Web , 2005, TOIT.

[20]  Fangli Ying,et al.  Selective progressive transmission of vector data , 2011 .

[21]  Michela Bertolotto,et al.  Progressive Transmission of Vector Map Data over the World Wide Web , 2001, GeoInformatica.

[22]  Nicole Ostländer,et al.  Designing Service Architectures for Distributed Geoprocessing: Challenges and Future Directions , 2007, Trans. GIS.

[23]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[24]  Peter van Oosterom Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest , 2005 .