Joining plasmonics with microfluidics: from convenience to inevitability.

Along the advances in optofluidics, functionalities based on the surface plasmon-polariton have also been finding an increasing level of involvement within micro/nano-fluidic systems, gradually forming a new field of plasmo-fluidics. This survey of the burgeoning field reveals that judicious selection and combination of plasmonic and micro/nano-fluidic features render the plasmo-fluidic integration useful and mutually beneficial to the point of inevitability. We establish categories for the level of integration and utilize them as a framework for surveying existing work and extracting future perspectives.

[1]  Development of a mass-producible on-chip plasmonic nanohole array biosensor. , 2011, Nanoscale.

[2]  Dietrich Kohlheyer,et al.  Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions. , 2009, Analytical chemistry.

[3]  L. Liz‐Marzán,et al.  SERS-based diagnosis and biodetection. , 2010, Small.

[4]  P. Chu,et al.  Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages , 2011 .

[5]  Gwo-Bin Lee,et al.  Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system , 2008 .

[6]  Mehmet Fatih Yanik,et al.  Large-scale plasmonic microarrays for label-free high-throughput screening. , 2011, Lab on a chip.

[7]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[8]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[9]  D. Lim,et al.  Application of Silver-Coated Magnetic Microspheres to a SERS-Based Optofluidic Sensor , 2011 .

[10]  J. Shim,et al.  High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals. , 2011, Analytical chemistry.

[11]  H. Altug,et al.  An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. , 2010, Nano letters.

[12]  K. Kihm,et al.  Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids. , 2010, Optics letters.

[13]  Ian M. White,et al.  Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis , 2012 .

[14]  B. J. Eggleton,et al.  Optofluidics: a novel generation of reconfigurable and adaptive compact architectures , 2008 .

[15]  J. Köhler,et al.  Formation of Au/Ag Nanoparticles in a Two Step Micro Flow‐Through Process , 2007 .

[16]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[17]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[18]  Johann Michael Köhler,et al.  Microfluidic generation of metal nanoparticles by borohydride reduction , 2008 .

[19]  H. Tsunoyama,et al.  Microfluidic synthesis and catalytic application of PVP-stabilized, approximately 1 nm gold clusters. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Ian M White,et al.  A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. , 2012, Biomicrofluidics.

[21]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[22]  T. Chung,et al.  Dynamic preconcentration of gold nanoparticles for surface-enhanced Raman scattering in a microfluidic system. , 2012, Small.

[23]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[24]  Giovanni Dietler,et al.  Registration of long-range surface plasmon resonance by angle-scanning feedback and its implementation for optical hydrogen sensing , 2009 .

[25]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[26]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[27]  J. Rocca,et al.  Phase-Coherent Injection-Seeded Soft X-rayLasers at Wavelengths Down to 13.2 nm , 2008 .

[28]  James A Glazier,et al.  Microfluidic devices integrating microcavity surface-plasmon-resonance sensors: glucose oxidase binding-activity detection. , 2010, Analytical chemistry.

[29]  Saif A. Khan,et al.  Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. , 2009, Small.

[30]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[31]  F. Jamal,et al.  Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions , 2012 .

[32]  Vincent Aimez,et al.  Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate. , 2010, Lab on a chip.

[33]  L.Y. Lin,et al.  Trapping and Manipulation of Biological Particles Through a Plasmonic Platform , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Robert J. Messinger,et al.  Making it stick: convection, reaction and diffusion in surface-based biosensors , 2008, Nature Biotechnology.

[35]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[36]  Romain Quidant,et al.  Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. , 2009, Lab on a chip.

[37]  Radan Slavik,et al.  Ultrahigh resolution long range surface plasmon-based sensor , 2007 .

[38]  Eduardo A Coronado,et al.  Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. , 2011, Nanoscale.

[39]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[40]  David Erickson,et al.  Optothermorheological flow manipulation. , 2009, Optics letters.

[41]  B. Prasad,et al.  Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants , 2010 .

[42]  David Sinton,et al.  Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. , 2010, Analytical chemistry.

[43]  Meikun Fan,et al.  A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. , 2011, Analytica chimica acta.

[44]  John A. Rogers,et al.  Large‐Area, Selective Transfer of Microstructured Silicon: A Printing‐ Based Approach to High‐Performance Thin‐Film Transistors Supported on Flexible Substrates , 2005 .

[45]  Lih Y. Lin,et al.  Localized surface plasmon assisted microfluidic mixing , 2008 .

[46]  P. Sciortino,et al.  Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. , 2010, Nano letters.

[47]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[48]  C. Mastrangelo,et al.  Label-free detection of protein binding with multisine SPR microchips. , 2011, Lab on a chip.

[49]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[50]  Klavs F. Jensen,et al.  Microfluidic Synthesis of Titania Shells on Colloidal Silica , 2007 .

[51]  T. Odom,et al.  Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. , 2010, Nano letters.

[52]  Ali Khademhosseini,et al.  Nano/Microfluidics for diagnosis of infectious diseases in developing countries. , 2010, Advanced drug delivery reviews.

[53]  Min Jun Kim,et al.  Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. , 2008, Lab on a chip.

[54]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[55]  B. Reinhard,et al.  Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. , 2012, ACS nano.

[56]  R. Stanley Williams,et al.  Optical properties of sub-wavelength dielectric gratings and their application for surface-enhanced Raman scattering , 2011 .

[57]  Nickolay V Lavrik,et al.  Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips. , 2012, The Analyst.

[58]  C. Kocabas,et al.  A microfluidic based differential plasmon resonance sensor , 2011 .

[59]  Luke P. Lee,et al.  Remote optical switch for localized and selective control of gene interference. , 2009, Nano letters.

[60]  Emad L. Izake,et al.  Forensic and homeland security applications of modern portable Raman spectroscopy. , 2010, Forensic science international.

[61]  Yoon-Kyoung Cho,et al.  In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. , 2011, Lab on a chip.

[62]  N. Abbott,et al.  Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces , 2007 .

[63]  F. Theil,et al.  Surface-enhanced Raman spectroscopy (SERS): progress and trends , 2012, Analytical and Bioanalytical Chemistry.

[64]  A. Kocabas,et al.  Plasmonic band gap structures for surface-enhanced Raman scattering. , 2008, Optics express.

[65]  Jun Kameoka,et al.  Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy , 2009 .

[66]  Steven Chu,et al.  Flow-focused synthesis of monodisperse gold nanoparticles using ionic liquids on a microfluidic platform. , 2010, Lab on a chip.

[67]  Leonidas E. Ocola,et al.  Liquid cell with plasmon lenses for surface enhanced Raman spectroscopy , 2010 .

[68]  Jürgen Popp,et al.  Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy--concepts and applications. , 2011, Lab on a chip.

[69]  P. Levin,et al.  Laser flash photolysis of benzophenone in polymer films. , 2011, The journal of physical chemistry. A.

[70]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[71]  Vincent Thomy,et al.  SPR biosensing coupled to a digital microfluidic microstreaming system. , 2007, Biosensors & bioelectronics.

[72]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[73]  Thomas Gervais,et al.  Mass transport and surface reactions in microfluidic systems , 2006 .

[74]  Ajay Agarwal,et al.  Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. , 2009, Lab on a chip.

[75]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[76]  Hulie Zeng,et al.  A surface plasmon resonance sensor on a compact disk-type microfluidic device. , 2011, Journal of separation science.

[77]  Shengtai He,et al.  Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor , 2008 .

[78]  David A. Fattal,et al.  Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy , 2009 .

[79]  Axel Günther,et al.  Microfluidic Synthesis of Polymer and Inorganic Particulate Materials , 2010 .

[80]  M. Natan,et al.  Surface-enhanced Raman spectroscopy and homeland security: a perfect match? , 2009, ACS nano.

[81]  Yoshito Y. Tanaka,et al.  Surface Enhanced Raman Scattering from Pseudoisocyanine on Ag Nanoaggregates Produced by Optical Trapping with a Linearly Polarized Laser Beam , 2009 .

[82]  Hiroshi Masuhara,et al.  Reversible assembly of gold nanoparticles confined in an optical microcage. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  M. Tabrizian,et al.  Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. , 2011, Biosensors & bioelectronics.

[84]  Yoonkey Nam,et al.  Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. , 2011, Small.

[85]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[86]  Fredrik Höök,et al.  Nanoplasmonic biosensing with on-chip electrical detection. , 2010, Biosensors & bioelectronics.

[87]  I. Shimoyama,et al.  Long-range surface plasmon resonance sensor with liquid micro-channels to maintain the symmetry condition of the refractive index , 2010 .

[88]  P. Berini,et al.  Long-range surface plasmons on ultrathin membranes. , 2007, Nano letters.

[89]  J. Köhler,et al.  Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors , 2008 .

[90]  Franz R. Aussenegg,et al.  Evidence of multipolar excitations in surface enhanced Raman scattering , 2005 .

[91]  A. Vogel,et al.  Mechanisms of pulsed laser ablation of biological tissues. , 2003, Chemical reviews.

[92]  Sang‐Hyun Oh,et al.  Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. , 2012, Analytical chemistry.

[93]  Photothermolysis of immobilized bacteria on gold nanograil arrays , 2011 .

[94]  Seokheun Choi,et al.  Monitoring protein distributions based on patterns generated by protein adsorption behavior in a microfluidic channel. , 2011, Lab on a chip.

[95]  Gwo-Bin Lee,et al.  Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. , 2007, Biosensors & bioelectronics.

[96]  Andrew J. deMello,et al.  Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor , 2007 .

[97]  Marek Piliarik,et al.  Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level , 2010 .

[98]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[99]  R. Corn,et al.  Rapid microarray detection of DNA and proteins in microliter volumes with surface plasmon resonance imaging measurements. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[100]  X. M. Zhang,et al.  Optofluidic planar reactors for photocatalytic water treatment using solar energy. , 2010, Biomicrofluidics.

[101]  Robert Magnusson,et al.  Demonstration of long-range surface plasmon-polariton waveguide sensors with asymmetric double-electrode structures , 2010 .

[102]  Sriram Natarajan,et al.  Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging. , 2008, Analytical biochemistry.

[103]  J. Alonso-Chamarro,et al.  Continuous flow synthesis of nanoparticles using ceramic microfluidic devices , 2010, Nanotechnology.

[104]  A. I. K. Choudhury,et al.  Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source , 2011 .

[105]  V. Konopsky,et al.  Long-range plasmons in lossy metal films on photonic crystal surfaces. , 2009, Optics letters.

[106]  Inhee Choi,et al.  Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. , 2011, Lab on a chip.

[107]  Shuning Li,et al.  Multiscale materials from microcontinuous-flow synthesis: ZnO and Au nanoparticle-filled uniform and homogeneous polymer microbeads , 2010, Nanotechnology.

[108]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[109]  Tiberiu-Dan Onuta,et al.  Submicrometer cavity surface plasmon sensors. , 2005, The journal of physical chemistry. B.

[110]  Tony Jun Huang,et al.  Microfluidic diagnostics for the developing world. , 2012, Lab on a chip.

[111]  J. Köhler,et al.  Generation of metal nanoparticles in a microchannel reactor , 2004 .

[112]  Soumyo Mukherji,et al.  A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection. , 2010, Lab on a chip.

[113]  Alp Artar,et al.  Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes , 2010 .

[114]  Rostislav Bukasov,et al.  In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy. , 2009, Analytical chemistry.

[115]  P. Berini,et al.  Surface plasmon waveguide devices with Tg-bonded Cytop claddings , 2011 .

[116]  A. Lutich,et al.  Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. , 2011, Nano letters.

[117]  R. Corn,et al.  Long-range surface plasmon resonance imaging for bioaffinity sensors. , 2005, Analytical chemistry.

[118]  Gwo-Bin Lee,et al.  Size-controlled synthesis of gold nanoparticles using a micro-mixing system , 2010 .

[119]  Hongkai Wu,et al.  Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules , 2012, Analytical and Bioanalytical Chemistry.

[120]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[121]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[122]  O. Tabata,et al.  Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfluidic system , 2010 .

[123]  Saif A. Khan,et al.  Plasmonic nanoshell synthesis in microfluidic composite foams. , 2010, Nano letters.

[124]  Paul Steinvurzel,et al.  Scannable plasmonic trapping using a gold stripe. , 2010, Nano letters.

[125]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[126]  Johann Michael Köhler,et al.  Formation of isolated and clustered Au nanoparticles in the presence of polyelectrolyte molecules using a flow-through Si chip reactor , 2005 .

[127]  Dongxiao Li,et al.  Optical trapping by a metal thin-film edge , 2011 .

[128]  D. Sinton,et al.  Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. , 2012, Lab on a chip.

[129]  D. Sinton,et al.  Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. , 2012, Nano letters.

[130]  C. Malek,et al.  Room temperature, water-based, microreactor synthesis of gold and silver nanoparticles , 2009 .

[131]  K. Toussaint,et al.  Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance. , 2012, Optics express.

[132]  Josef Hormes,et al.  Microfluidic synthesis of nanomaterials. , 2008, Small.

[133]  M. Fedoruk,et al.  Subdiffraction-limited milling by an optically driven single gold nanoparticle. , 2011, ACS nano.

[134]  David Erickson,et al.  Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis , 2009 .

[135]  Jianfang Wang,et al.  A Gold Nanocrystal/Poly(dimethylsiloxane) Composite for Plasmonic Heating on Microfluidic Chips , 2012, Advanced materials.

[136]  Wolfgang Fritzsche,et al.  Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis , 2011 .

[137]  J. Homola,et al.  Analytical value of detecting an individual molecular binding event: the case of the surface plasmon resonance biosensor. , 2012, Analytical chemistry.

[138]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[139]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[140]  T. Zeng,et al.  Size-tunable synthesis of metallic nanoparticles in a continuous and steady-flow reactor , 2007 .

[141]  Richard N. Zare,et al.  Microfluidic device for immunoassays based on surface plasmon resonance imaging. , 2008, Lab on a chip.

[142]  Pierre Berini,et al.  Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels , 2010 .

[143]  Christopher Lausted,et al.  Parallel microfluidic surface plasmon resonance imaging arrays. , 2010, Lab on a chip.

[144]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[145]  A. deMello,et al.  Optofluidic platforms based on surface-enhanced Raman scattering. , 2010, The Analyst.

[146]  Yeshaiahu Fainman,et al.  Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor , 2007 .