On the Affinity between 3D Detectors and Descriptors

The literature on local invariant 3D features is growing, also fostered by the advent of cheap off-the-shelf 3D sensors. Although several recent proposals in the field include both a detector and a descriptor, some of the most successful and used descriptors do not define a companion detector. Moreover, as vouched by the related field of image features, detectors and descriptors defined within the same proposal do not necessarily yield the highest performance when used together. Hence, in this work we investigate on the effectiveness of the many possible combinations between state-of-the-art 3D detectors and descriptors, so as to identify optimal pairs as well as highlight well-matched detectors for those descriptors lacking a companion feature detection algorithm.

[1]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[2]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[3]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[4]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors Based on 3D Objects , 2005, ICCV.

[5]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Roberto Cipolla,et al.  An Evaluation of Volumetric Interest Points , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[7]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[8]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[9]  George Wolberg,et al.  Multiscale 3D Feature Extraction and Matching , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[10]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[11]  Tomás Pajdla,et al.  3D with Kinect , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[12]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[13]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[14]  Federico Tombari,et al.  On the Use of Implicit Shape Models for Recognition of Object Categories in 3D Data , 2010, ACCV.

[15]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[16]  Martial Hebert,et al.  Multi-scale interest regions from unorganized point clouds , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[17]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[18]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[19]  Federico Tombari,et al.  Hough Voting for 3D Object Recognition under Occlusion and Clutter , 2012, IPSJ Trans. Comput. Vis. Appl..

[20]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[21]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[22]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[23]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[24]  Luc Van Gool,et al.  Proceedings of Robotics: Science and Systems IV , 2008 .

[25]  Cindy Grimm,et al.  Local Shape Descriptors, a Survey and Evaluation , 2011, 3DOR@Eurographics.

[26]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[27]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Thomas A. Funkhouser,et al.  Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[29]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[30]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[31]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[32]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[33]  Yi Liu,et al.  Shape Topics: A Compact Representation and New Algorithms for 3D Partial Shape Retrieval , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Henrik Aanæs,et al.  Finding the Best Feature Detector-Descriptor Combination , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[35]  Benjamin Bustos,et al.  Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes , 2011, The Visual Computer.

[36]  Ko Nishino,et al.  Scale-Dependent/Invariant Local 3D Shape Descriptors for Fully Automatic Registration of Multiple Sets of Range Images , 2008, ECCV.

[37]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2012, International Journal of Computer Vision.

[39]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.