Recent Advances of Isogeometric Analysis in Computational Electromagnetics

In this communication the advantages and drawbacks of the isogeometric analysis (IGA) are reviewed in the context of electromagnetic simulations. IGA extends the set of polynomial basis functions, commonly employed by the classical Finite Element Method (FEM). While identical to FEM with N\'ed\'elec's basis functions in the lowest order case, it is based on B-spline and Non-Uniform Rational B-spline basis functions. The main benefit of this is the exact representation of the geometry in the language of computer aided design (CAD) tools. This simplifies the meshing as the computational mesh is implicitly created by the engineer using the CAD tool. The curl- and div-conforming spline function spaces are recapitulated and the available software is discussed. Finally, several non-academic benchmark examples in two and three dimensions are shown which are used in optimization and uncertainty quantification workflows.

[1]  S. Kurz,et al.  A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling , 1998 .

[2]  Victor M. Calo,et al.  PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .

[3]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[4]  Christophe Schlick,et al.  Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.

[5]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[6]  Victor M. Calo,et al.  PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..

[7]  S. J. Salon,et al.  Finite element analysis of electrical machines , 1995 .

[8]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[9]  Sebastian Schöps,et al.  Aspects of Coupled Problems in Computational Electromagnetics Formulations , 2012 .

[10]  Zeger Bontinck,et al.  Isogeometric analysis and harmonic stator–rotor coupling for simulating electric machines , 2017, Computer Methods in Applied Mechanics and Engineering.

[11]  K. Miura,et al.  Method of moments based on isogeometric analysis for electrostatic field simulations of curved multiconductor transmission lines , 2014, 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems.

[12]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[13]  D. Howe,et al.  The influence of finite element discretisation on the prediction of cogging torque in permanent magnet excited motors , 1992 .

[14]  Stefan Kurz,et al.  A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems , 2017, 1708.09162.

[15]  W. Ackermann,et al.  Coupler Kicks in the Third Harmonic Module for the XFEL , 2009 .

[16]  Rafael Vázquez Hernández,et al.  An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..

[17]  Tadatoshi Sekine,et al.  Electrostatic field simulations of curved conductors by using method of moments based on isogeometric analysis , 2014, 2014 International Symposium on Electromagnetic Compatibility.

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  H. Gassot MECHANICAL STABILITY OF THE RF SUPERCONDUCTING CAVITIES , 2002 .

[20]  Helmut Harbrecht,et al.  Comparison of fast boundary element methods on parametric surfaces , 2013 .

[21]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[22]  H. Padamsee,et al.  RF superconductivity for accelerators , 1998 .

[23]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[24]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[25]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[26]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[27]  J. Li,et al.  Isogeometric analysis of integral equations using subdivision , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[28]  M. Pauletti,et al.  Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .

[29]  Rafael Vázquez,et al.  Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .

[30]  Jacopo Corno,et al.  Numerical Methods for the Estimation of the Impact of Geometric Uncertainties on the Performance of Electromagnetic Devices , 2017 .

[31]  Seonho Cho,et al.  Isogeometric Shape Optimization of Ferromagnetic Materials in Magnetic Actuators , 2016, IEEE Transactions on Magnetics.

[32]  E. Zaplatin,et al.  Lorentz force detuning analysis for low-loss, reentrant and half-reentrant superconducting RF cavities , 2006 .

[33]  M. Luong,et al.  NUMERICAL SIMULATIONS OF DYNAMIC LORENTZ DETUNING OF SC CAVITIES , 2002 .

[34]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Bert Jüttler,et al.  Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .

[37]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[39]  Stéphane Clenet Uncertainty Quantification in Computational Electromagnetics : The stochastic approach , 2019 .

[40]  E. al.,et al.  Superconducting TESLA cavities , 2000, physics/0003011.

[41]  Michel Rochette,et al.  Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models , 2016 .

[42]  S. Russenschuck Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization , 2010 .

[43]  Rainer Niekamp,et al.  An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations , 2002 .

[44]  Alfio Quarteroni,et al.  MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces , 2015 .

[45]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[46]  Zeger Bontinck,et al.  Modelling of a Permanent Magnet Synchronous Machine Using Isogeometric Analysis , 2017, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering.

[47]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[48]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[49]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[50]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.

[51]  Zeger Bontinck,et al.  Optimization of a Stern–Gerlach Magnet by Magnetic Field–Circuit Coupling and Isogeometric Analysis , 2015, IEEE Transactions on Magnetics.

[52]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[53]  Stefan Turek,et al.  Isogeometric Analysis of the Navier-Stokes equations with Taylor-Hood B-spline elements , 2015, Appl. Math. Comput..

[54]  Ulrich Römer,et al.  Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design , 2015 .

[55]  Sebastian Schöps,et al.  Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets , 2017, IEEE Journal on Multiscale and Multiphysics Computational Techniques.