暂无分享,去创建一个
Zeger Bontinck | Sebastian Schöps | Herbert De Gersem | Carlo de Falco | Stefan Kurz | Rafael Vázquez Hernández | Jürgen Dölz | Felix Wolf | Andreas Pels | Ulrich Römer | Jacopo Corno | Ulrich J. Römer | S. Schöps | S. Kurz | H. Gersem | Z. Bontinck | J. Corno | J. Dölz | C. Falco | A. Pels | Felix Wolf
[1] S. Kurz,et al. A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling , 1998 .
[2] Victor M. Calo,et al. PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .
[3] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[4] Christophe Schlick,et al. Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.
[5] Fabio Nobile,et al. Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.
[6] Victor M. Calo,et al. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..
[7] S. J. Salon,et al. Finite element analysis of electrical machines , 1995 .
[8] Vinh Phu Nguyen,et al. Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..
[9] Sebastian Schöps,et al. Aspects of Coupled Problems in Computational Electromagnetics Formulations , 2012 .
[10] Zeger Bontinck,et al. Isogeometric analysis and harmonic stator–rotor coupling for simulating electric machines , 2017, Computer Methods in Applied Mechanics and Engineering.
[11] K. Miura,et al. Method of moments based on isogeometric analysis for electrostatic field simulations of curved multiconductor transmission lines , 2014, 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems.
[12] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[13] D. Howe,et al. The influence of finite element discretisation on the prediction of cogging torque in permanent magnet excited motors , 1992 .
[14] Stefan Kurz,et al. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems , 2017, 1708.09162.
[15] W. Ackermann,et al. Coupler Kicks in the Third Harmonic Module for the XFEL , 2009 .
[16] Rafael Vázquez Hernández,et al. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..
[17] Tadatoshi Sekine,et al. Electrostatic field simulations of curved conductors by using method of moments based on isogeometric analysis , 2014, 2014 International Symposium on Electromagnetic Compatibility.
[18] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[19] H. Gassot. MECHANICAL STABILITY OF THE RF SUPERCONDUCTING CAVITIES , 2002 .
[20] Helmut Harbrecht,et al. Comparison of fast boundary element methods on parametric surfaces , 2013 .
[21] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[22] H. Padamsee,et al. RF superconductivity for accelerators , 1998 .
[23] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[24] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[25] Giancarlo Sangalli,et al. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..
[26] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[27] J. Li,et al. Isogeometric analysis of integral equations using subdivision , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.
[28] M. Pauletti,et al. Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .
[29] Rafael Vázquez,et al. Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .
[30] Jacopo Corno,et al. Numerical Methods for the Estimation of the Impact of Geometric Uncertainties on the Performance of Electromagnetic Devices , 2017 .
[31] Seonho Cho,et al. Isogeometric Shape Optimization of Ferromagnetic Materials in Magnetic Actuators , 2016, IEEE Transactions on Magnetics.
[32] E. Zaplatin,et al. Lorentz force detuning analysis for low-loss, reentrant and half-reentrant superconducting RF cavities , 2006 .
[33] M. Luong,et al. NUMERICAL SIMULATIONS OF DYNAMIC LORENTZ DETUNING OF SC CAVITIES , 2002 .
[34] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[35] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[36] Bert Jüttler,et al. Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .
[37] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[39] Stéphane Clenet. Uncertainty Quantification in Computational Electromagnetics : The stochastic approach , 2019 .
[40] E. al.,et al. Superconducting TESLA cavities , 2000, physics/0003011.
[41] Michel Rochette,et al. Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models , 2016 .
[42] S. Russenschuck. Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization , 2010 .
[43] Rainer Niekamp,et al. An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations , 2002 .
[44] Alfio Quarteroni,et al. MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces , 2015 .
[45] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[46] Zeger Bontinck,et al. Modelling of a Permanent Magnet Synchronous Machine Using Isogeometric Analysis , 2017, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering.
[47] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[48] Xiaoping Qian,et al. Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .
[49] Rafael Vázquez,et al. A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..
[50] J. Trevelyan,et al. An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.
[51] Zeger Bontinck,et al. Optimization of a Stern–Gerlach Magnet by Magnetic Field–Circuit Coupling and Isogeometric Analysis , 2015, IEEE Transactions on Magnetics.
[52] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[53] Stefan Turek,et al. Isogeometric Analysis of the Navier-Stokes equations with Taylor-Hood B-spline elements , 2015, Appl. Math. Comput..
[54] Ulrich Römer,et al. Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design , 2015 .
[55] Sebastian Schöps,et al. Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets , 2017, IEEE Journal on Multiscale and Multiphysics Computational Techniques.