Orbital Entanglement in Bond-Formation Processes.

The accurate calculation of the (differential) correlation energy is central to the quantum chemical description of bond-formation and bond-dissociation processes. In order to estimate the quality of single- and multireference approaches for this purpose, various diagnostic tools have been developed. In this work, we elaborate on our previous observation [J. Phys. Chem. Lett.2012, 3, 3129] that one- and two-orbital-based entanglement measures provide quantitative means for the assessment and classification of electron correlation effects among molecular orbitals. The dissociation behavior of some prototypical diatomic molecules features all types of correlation effects relevant for chemical bonding. We demonstrate that our entanglement analysis is convenient to dissect these electron correlation effects and to provide a conceptual understanding of bond-forming and bond-breaking processes from the point of view of quantum information theory.

[1]  Jürgen Gauss,et al.  State‐specific multireference coupled‐cluster theory , 2013 .

[2]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[3]  R. Buenker,et al.  Ab initio many-electron study for the low-lying states of the alkali hydride cations in the adiabatic representation. , 2012, The Journal of chemical physics.

[4]  Nathan J. DeYonker,et al.  Multireference Character for 3d Transition-Metal-Containing Molecules. , 2012, Journal of chemical theory and computation.

[5]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[6]  Sriram Krishnamoorthy,et al.  Scalable implementations of accurate excited-state coupled cluster theories: Application of high-level methods to porphyrin-based systems , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[7]  Peter Pulay,et al.  A perspective on the CASPT2 method , 2011 .

[8]  H.J.J. van Dam,et al.  NWChem: scalable parallel computational chemistry , 2011 .

[9]  Gergely Gidofalvi,et al.  Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size. , 2011, The journal of physical chemistry. A.

[10]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[11]  M. Reiher,et al.  Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.

[12]  B. Jeziorski Multireference coupled-cluster Ansatz , 2010 .

[13]  D. Mazziotti,et al.  Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence. , 2010, The Journal of chemical physics.

[14]  R. Bochicchio,et al.  On the measure of electron correlation and entanglement in quantum chemistry based on the cumulant of the second-order reduced density matrix. , 2010, The Journal of chemical physics.

[15]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[16]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[17]  Ludwik Adamowicz,et al.  Multireference state-specific coupled-cluster methods. State-of-the-art and perspectives. , 2009, Physical chemistry chemical physics : PCCP.

[18]  Michael Hanrath,et al.  Dissociating N2: a multi-reference coupled cluster study on the potential energy surfaces of ground and excited states , 2009 .

[19]  J. Paldus,et al.  Full potential energy curve for N2 by the reduced multireference coupled-cluster method. , 2008, The Journal of chemical physics.

[20]  Mihály Kállay,et al.  The accuracy of molecular bond lengths computed by multireference electronic structure methods , 2008 .

[21]  Jun Shen,et al.  Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: the formula for general active spaces and its applications for multibond breaking systems. , 2008, The Journal of chemical physics.

[22]  J. Sólyom,et al.  Applications of Quantum Information in the Density-Matrix Renormalization Group , 2008 .

[23]  O. Prezhdo,et al.  High-order entropy measures and spin-free quantum entanglement for molecular problems , 2007 .

[24]  Garnet Kin-Lic Chan,et al.  The radical character of the acenes: a density matrix renormalization group study. , 2007, The Journal of chemical physics.

[25]  Sabre Kais,et al.  Entanglement, Electron Correlation, and Density Matrices , 2007 .

[26]  P. Löwdin Correlation Problem in Many‐Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas , 2007 .

[27]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[28]  John F. Stanton,et al.  Applications of Post‐Hartree—Fock Methods: A Tutorial , 2007 .

[29]  F. Gadéa,et al.  Evaluation of the adiabatic correction for LiH, RbH and CsH molecules , 2006 .

[30]  S. Kais,et al.  Entanglement and electron correlation in quantum chemistry calculations , 2006 .

[31]  D. Mazziotti,et al.  The cumulant two-particle reduced density matrix as a measure of electron correlation and entanglement. , 2006, The Journal of chemical physics.

[32]  F. Gadéa,et al.  Theoretical study of the CsH molecule: adiabatic and diabatic potential energy curves and dipole moments , 2006 .

[33]  O. Legeza,et al.  Two-site entropy and quantum phase transitions in low-dimensional models. , 2005, Physical review letters.

[34]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[35]  Dmitry I. Lyakh,et al.  Dissociation of the fluorine molecule: CASCCSD method and other many-particle models , 2006 .

[36]  Ron Shepard,et al.  Optimization of nonlinear wave function parameters , 2006 .

[37]  Markus Reiher,et al.  Relativistic DMRG calculations on the curve crossing of cesium hydride. , 2005, The Journal of chemical physics.

[38]  Dmitry I. Lyakh,et al.  New indices for describing the multi-configurational nature of the coupled cluster wave function , 2005 .

[39]  S. Kais,et al.  Entanglement as measure of electron–electron correlation in quantum chemistry calculations , 2005, quant-ph/0507148.

[40]  R. Bartlett,et al.  Critical comparison of various connected quadruple excitation approximations in the coupled-cluster treatment of bond breaking. , 2005, The Journal of chemical physics.

[41]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[42]  Oleg V. Prezhdo,et al.  Irreducible charge density matrices for analysis of many‐electron wave functions , 2005 .

[43]  So Hirata,et al.  Combined coupled-cluster and many-body perturbation theories. , 2004, The Journal of chemical physics.

[44]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[45]  Jürgen Gauss,et al.  State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. , 2004, The Journal of chemical physics.

[46]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[47]  So Hirata,et al.  Higher-order equation-of-motion coupled-cluster methods. , 2004, The Journal of chemical physics.

[48]  B. Roos,et al.  Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers , 2004 .

[49]  O. Legeza,et al.  Quantum data compression, quantum information generation, and the density-matrix renormalization group method , 2004, cond-mat/0401136.

[50]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[51]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[52]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[53]  Roberto C. Bochicchio,et al.  Comment on ‘Characterizing unpaired electrons from one-particle density matrix’ [M. Head-Gordon, Chem. Phys. Lett. 372 (2003) 508–511] , 2003 .

[54]  Martin Head-Gordon,et al.  Reply to comment on ‘characterizing unpaired electrons from the one-particle density matrix’ , 2003 .

[55]  Timothy J. Lee Comparison of the T1 and D1 diagnostics for electronic structure theory: a new definition for the open-shell D1 diagnostic , 2003 .

[56]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[57]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[58]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[59]  Karol Kowalski,et al.  Can ordinary single-reference coupled-cluster methods describe the potential energy curve of N2? The renormalized CCSDT(Q) study , 2001 .

[60]  P. Piecuch,et al.  A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2 , 2001 .

[61]  Ernest R. Davidson,et al.  Distribution of effectively unpaired electrons , 2000 .

[62]  T. Crawford,et al.  A new diagnostic for open-shell coupled-cluster theory , 2000 .

[63]  C. Janssen,et al.  Double-substitution-based diagnostics for coupled-cluster and Møller–Plesset perturbation theory , 1999 .

[64]  J. Paldus,et al.  Reduced multireference couple cluster method. II. Application to potential energy surfaces of HF, F2, and H2O , 1998 .

[65]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[66]  P. Ziesche Correlation strength and information entropy , 1995 .

[67]  Alistair P. Rendell,et al.  Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory , 1995 .

[68]  Peter Herzig,et al.  Point-Group Theory Tables , 1994 .

[69]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[70]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[71]  P. Knowles,et al.  Accurate multireference configuration interaction calculations of the potential energy function and the dissociation energy of N2 , 1991 .

[72]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[73]  B. A. Hess,et al.  Ab initio MRD CI calculations on the cesium hydride (CsH) molecule , 1989 .

[74]  H. Schaefer,et al.  Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization , 1989 .

[75]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[76]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[77]  R. Ahlrichs,et al.  The impact of higher polarization basis functions on molecular AB initio results II. The ground states of CO, N2, O2, and F2 , 1985 .

[78]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[79]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[80]  R. Ahlrichs,et al.  The impact of higher polarization basis functions on molecular ab initio results. I. The ground state of F2 , 1985 .

[81]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[82]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[83]  Kazuo Takatsuka,et al.  Distribution of odd electrons in ground-state molecules , 1978 .

[84]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[85]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. III. Effect of Correlation on Orbitals , 1963 .

[86]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Löwdin Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects , 1955 .