New two‐dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes
暂无分享,去创建一个
Hussein Hoteit | Bernard Philippe | Jocelyne Erhel | Robert Mosé | Philippe Ackerer | J. Erhel | H. Hoteit | P. Ackerer | R. Mosé | B. Philippe | H. Hoteit | P. Ackerer | Robert Mosé | Bernard Philippe
[1] Guy Chavent,et al. The local projection P 0 − P 1 -discontinuous-Galerkin finite element method for scalar conservation laws , 2009 .
[2] G. Chavent,et al. A finite-element method for the 1-D water flooding problem with gravity , 1982 .
[3] Robert Mosé,et al. Solution of the Advection-Diffusion Equation Using a Combination of Discontinuous and Mixed Finite Elements , 1997 .
[4] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[5] J. Jaffré,et al. A Discontinuous finite element method for scalar nonlinear conservation laws , 1993 .
[6] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[7] Matthew E. Hubbard,et al. Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .
[8] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .
[9] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[10] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[11] Derek M. Causon,et al. POSITIVELY CONSERVATIVE HIGH‐RESOLUTION CONVECTION SCHEMES FOR UNSTRUCTURED ELEMENTS , 1996 .
[12] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[13] Lahcen Kaddouri. Une methode d'elements finis discontinus pour les equations d'euler des fluides compressibles , 1993 .
[14] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[15] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[16] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[17] M. Buès,et al. Numerical Simulations for Saltwater Intrusion by the Mixed Hybrid Finite Element Method and Discontinuous Finite Element Method , 2000 .
[18] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[19] Chi-Wang Shu. TVB uniformly high-order schemes for conservation laws , 1987 .
[20] G. Chavent. Mathematical models and finite elements for reservoir simulation , 1986 .
[21] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[22] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[23] Stanley Osher,et al. Convergence of Generalized MUSCL Schemes , 1985 .