A Multiset Semantics for the pi-Calculus with Replication

A multiset (or Petri net) semantics is defined for the π-calculus with replication. The semantic mapping is a strong bisimulation, and structurally congruent processes have the same semantics.

[1]  Robin Milner,et al.  Elements of interaction , 1993 .

[2]  Ernst-Rüdiger Olderog,et al.  Nets, terms and formulas , 1991 .

[3]  Hartmut Ehrig,et al.  An Algebraic View on Petri Nets , 1997, Bull. EATCS.

[4]  Davide Sangiorgi,et al.  A Theory of Bisimulation for the pi-Calculus , 1993, CONCUR.

[5]  Daniel Le Métayer,et al.  Programming by multiset transformation , 1993, CACM.

[6]  Wolfgang Reisig,et al.  The Non-sequential Behavior of Petri Nets , 1983, Inf. Control..

[7]  Ursula Goltz On Representing CCS Programs by Finite Petri Nets , 1988, MFCS.

[8]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[9]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[10]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[11]  Gérard Boudol,et al.  Some Chemical Abstract Machines , 1993, REX School/Symposium.

[12]  Mogens Nielsen CCS - and its Relationship to Net Theory , 1986, Advances in Petri Nets.

[13]  Jan A. Bergstra,et al.  An operational semantics for process algebra , 1985 .

[14]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[15]  Robin Milner,et al.  Concurrent Processes and Their Syntax , 1979, JACM.

[16]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[17]  Dirk Taubner,et al.  Finite Representations of CCS and TCSP Programs by Automata and Petri Nets , 1989, Lecture Notes in Computer Science.

[18]  Robin Milner,et al.  Flowgraphs and Flow Algebras , 1979, JACM.

[19]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[20]  Robin Milner,et al.  Elements of interaction: Turing award lecture , 1993, CACM.

[21]  Robin Milner,et al.  The Polyadic π-Calculus: a Tutorial , 1993 .

[22]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[23]  Helena Rasiowa,et al.  Mathematical problems in computation theory , 1988 .