Approximation Algorithms for k-Line Center

Given a set P of n points in Rd and an integer k ? 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ? > 0, computes k cylinders of radius at most (1 + ?)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ?. We first show that there exists a small "certificate" Q ? P, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1 + ?) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.

[1]  Refael Hassin,et al.  Approximation algorithms for hitting objects with straight lines , 1991, Discret. Appl. Math..

[2]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[3]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[4]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[5]  Sariel Har-Peled,et al.  Efficiently approximating the minimum-volume bounding box of a point set in three dimensions , 1999, SODA '99.

[6]  Sariel Har-Peled,et al.  Projective clustering in high dimensions using core-sets , 2002, SCG '02.

[7]  Sharad Mehrotra,et al.  Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces , 2000, VLDB.

[8]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[9]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[10]  Pankaj K. Agarwal,et al.  A (1+)-approximation algorithm for 2-line-center , 2003, Comput. Geom..

[11]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[12]  Pankaj K. Agarwal,et al.  Maintaining approximate extent measures of moving points , 2001, SODA '01.

[13]  Daniel A. Keim,et al.  Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering , 1999, VLDB.

[14]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.

[15]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[16]  Micha Sharir,et al.  Efficient randomized algorithms for some geometric optimization problems , 1995, SCG '95.

[17]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[18]  Michael T. Goodrich,et al.  Efficient approximation and optimization algorithms for computational metrology , 1997, SODA '97.

[19]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[20]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  Sariel Har-Peled,et al.  Approximate shape fitting via linearization , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[23]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Hans-Peter Kriegel,et al.  Density-Connected Sets and their Application for Trend Detection in Spatial Databases , 1997, KDD.

[25]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[26]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[27]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[28]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[29]  Timothy M. Chan Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus , 2000, SCG '00.

[30]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[31]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[32]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[33]  Santosh S. Vempala,et al.  Locality-preserving hashing in multidimensional spaces , 1997, STOC '97.

[34]  Pankaj K. Agarwal,et al.  Approximation algorithms for projective clustering , 2000, SODA '00.

[35]  Jerzy W. Jaromczyk,et al.  The Two-Line Center Problem from a Polar View: A New Algorithm and Data Structure , 1995, WADS.

[36]  T. M. Murali,et al.  A Monte Carlo algorithm for fast projective clustering , 2002, SIGMOD '02.