Simple Scheduled Memetic Algorithm for inverse problems in higher dimensions: Application to chemical kinetics

This paper proposes a scheme for the hybridisation of an evolution strategy framework and periodically scheduled Nelder-Mead algorithm. This relatively simple hybridisation scheme turns out to be efficient for the optimisation problems in higher dimensions. The efficiency of the proposed method is tested for a complex engineering problem, namely an inverse problem of chemical kinetics. An extensive parameter analysis and tuning are presented. Numerical results show the superiority of the proposed methods in comparison with some popular metaheuristics and some tailored algorithms presented in the literature for solving the problem under investigation.

[1]  Michael J. Pilling,et al.  Erratum: Evaluated Kinetic Data for Combustion Modeling. Supplement I [J. Phys. Chem. Ref. Data 23, 847 (1994)] , 1995 .

[2]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[3]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  David B. Fogel,et al.  An Introduction to Evolutionary Computation , 2022 .

[5]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[6]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .

[7]  Zhijian Wu,et al.  An evolutionary algorithm for solving parameter identification problems in elliptic systems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  S. Suram,et al.  Quantitative trait loci based solution of an inverse radiation heat transfer problem , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  Derek B. Ingham,et al.  A Real Coded Genetic Algorithm for the Optimisation of Reaction Rate Parameters for Chemical Kinetic Modelling in a Perfectly Stirred Reactor , 2002, GECCO Late Breaking Papers.

[10]  Derek B. Ingham,et al.  Fitness Diversity Based Adaptive Memetic Algorithm for solving inverse problems of chemical kinetics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[11]  Robert J. Kee,et al.  PSE: a Fortran program for modeling well-stirred reactors , 1986 .

[12]  Yuanxiang Li,et al.  Evolutionary algorithm for parameter identification inverse problems in parabolic systems , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[13]  Anargyros Sarafopoulos,et al.  Resolution of the Inverse Problem for Iterated Function Systems using Evolutionary Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  Derek B. Ingham,et al.  Incorporation of physical bounds on rate parameters for reaction mechanism optimization using genetic algorithms , 2003 .

[15]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  Raino A. E. Mäkinen,et al.  An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV , 2007, Applied Intelligence.

[18]  M. Pourkashanian,et al.  The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms , 2000 .

[19]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[20]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .