An Augmented Lagrangian Function with Improved Exactness Properties

In this paper we introduce a new exact augmented Lagrangian function for the solution of general nonlinear programming problems. For this Lagrangian function a complete equivalence between its unconstrained minimization on an open set and the solution of the original constrained problem can be established under mild assumptions and without requiring the boundedness of the feasible set of the constrained problem. Moreover we describe an unconstrained algorithmic model which is globally convergent toward KKT pairs of the original constrained problem. The algorithmic model can be endowed with a superlinear rate of convergence by a proper choice of the search direction in the unconstrained minimization, without requiring strict complementarity.

[1]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[2]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[3]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[4]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[5]  Torkel Glad,et al.  A multiplier method with automatic limitation of penalty growth , 1979, Math. Program..

[6]  L. Grippo,et al.  A new augmented Lagrangian function for inequality constraints in nonlinear programming problems , 1982 .

[7]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[8]  L. Grippo,et al.  A class of continuously differentiable exact penalty function algorithms for nonlinear programming problems , 1984 .

[9]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[10]  L. Grippo,et al.  A Continuously Differentiable Exact Penalty Function for Nonlinear Programming Problems with Inequality Constraints , 1985 .

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  D. Klatte,et al.  On second-order sufficient optimality conditions for c 1,1-optimization problems , 1988 .

[13]  S. Lucidi New results on a class of exact augmented Lagrangians , 1988 .

[14]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[15]  James V. Burke,et al.  A robust sequential quadratic programming method , 1989, Math. Program..

[16]  J. Burke A sequential quadratic programming method for potentially infeasible mathematical programs , 1989 .

[17]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[18]  Stefano Lucidi,et al.  New Results on a Continuously Differentiable Exact Penalty Function , 1992, SIAM J. Optim..

[19]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[20]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[21]  Jong-Shi Pang,et al.  Serial and Parallel Computation of Karush-Kuhn-Tucker Points via Nonsmooth Equations , 1994, SIAM J. Optim..

[22]  G. Di Pillo,et al.  Exact Penalty Methods , 1994 .

[23]  J. F. Bonnans,et al.  Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .

[24]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[25]  A. Fiacco,et al.  Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993 ∗ , 1995 .

[26]  S. Lucidi,et al.  Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems , 1995 .

[27]  Francisco Facchinei,et al.  Minimization of SC1 functions and the Maratos effect , 1995, Oper. Res. Lett..

[28]  S. Lucidi,et al.  On Exact Augmented Lagrangian Functions in Nonlinear Programming , 1996 .