Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation
暂无分享,去创建一个
[1] K. Judd. Numerical methods in economics , 1998 .
[2] John N. Tsitsiklis,et al. Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.
[3] Francis A. Longstaff,et al. Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .
[4] R. Willink,et al. Normal moments and Hermite polynomials , 2005 .
[5] N. Barberis. Investing for the Long Run When Returns are Predictable , 2000 .
[6] J. Detemple,et al. A Monte Carlo Method for Optimal Portfolios , 2000 .
[7] Georgios Skoulakis,et al. A State-Variable Decomposition Approach for Solving Portfolio Choice Problems , 2008 .
[8] R. C. Merton,et al. AN INTERTEMPORAL CAPITAL ASSET PRICING MODEL , 1973 .
[9] J. Cox,et al. Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .
[10] Thomas H. Savits,et al. Some statistical applications of Faa di Bruno , 2006 .
[11] Eduardo S. Schwartz,et al. Strategic asset allocation , 1997 .
[12] Pierluigi Balduzzi,et al. Transaction costs and predictability: some utility cost calculations , 1999 .
[13] Michael W. Brandt. Portfolio Choice Problems , 2010 .
[14] Luis M. Viceira,et al. Consumption and Portfolio Decisions When Expected Returns are Time Varying , 1996 .
[15] Jules H. van Binsbergen,et al. Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? , 2007 .