Quality Control of Wood-Pulp Chips Using A 3D Laser Scanner and Functional Pattern Recognition

We describe a real-time quality control system for wood chips using a 3D laser scanner. The work evaluates the appropriateness of applying a functional rather than the typical vectorial approach to a pattern recognition problem. The problem to be resolved was to construct an online system for controlling wood-pulp chip granulometry quality for implementation in a wood-pulp factory. A functional linear model and a functional logistic model were used to classify the hourly empirical distributions of wood-chip thicknesses estimated on the basis of images produced by a 3D laser scanner. The results obtained using these functional techniques were compared to the results of their vectorial counterparts and support vector machines, whose input consisted of several statistics of the hourly empirical distribution. We conclude that the empirical distributions have sufficiently rich functional traits so as to permit the pattern recognition process to benefit from the functional representation.