Maximum likelihood estimation of latent Markov models using closed-form approximations

Abstract This paper proposes and implements an efficient and flexible method to compute maximum likelihood estimators of continuous-time models when part of the state vector is latent. Stochastic volatility and term structure models are typical examples. Existing methods integrate out the latent variables using either simulations as in MCMC, or replace the latent variables by observable proxies. By contrast, our approach relies on closed-form approximations to estimate parameters and simultaneously infer the distribution of filters, i.e., that of the latent states conditioning on observations. Without any particular assumption on the filtered distribution, we approximate in closed form a coupled iteration system for updating the likelihood function and filters based on the transition density of the state vector. Our procedure has a linear computational cost with respect to the number of observations, as opposed to the exponential cost implied by the high dimensional integral nature of the likelihood function. We establish the theoretical convergence of our method as the frequency of observation increases and conduct Monte Carlo simulations to demonstrate its performance.

[1]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[2]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[3]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[4]  Kris Jacobs,et al.  The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well , 2009, Manag. Sci..

[5]  T. S. Kleppe,et al.  Maximum Likelihood Estimation of Partially Observed Diffusion Models , 2014 .

[6]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[7]  Garland Durham,et al.  Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models , 2006 .

[8]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[9]  Hengyan Li,et al.  Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates , 2005 .

[10]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[11]  Numerical Integration-Based Gaussian Mixture Filters for Maximum Likelihood Estimation of Asymmetric Stochastic Volatility Models , 2007 .

[12]  David S. Bates,et al.  Maximum Likelihood Estimation of Latent Affine Processes , 2003 .

[13]  K. Lindsay,et al.  A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions , 2013 .

[14]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[15]  S. F. Schmidt,et al.  Application of State-Space Methods to Navigation Problems , 1966 .

[16]  Nicholas G. Polson,et al.  Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices , 2009 .

[17]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[18]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[19]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[20]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[21]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[22]  J. Jacod,et al.  High-Frequency Financial Econometrics , 2014 .

[23]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[24]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[25]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[26]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[27]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[28]  L. Harris,et al.  A maximum likelihood approach for non-Gaussian stochastic volatility models , 1998 .

[29]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[30]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[31]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[32]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[33]  Jean-Marie Dufour,et al.  Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models , 2009 .

[34]  Douglas G. Steigerwald,et al.  Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models , 1997 .

[35]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[36]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[37]  Bent E. Sørensen,et al.  GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .

[38]  Anthony A. Smith,et al.  Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions , 1993 .

[39]  Drew D. Creal,et al.  Estimation of Affine Term Structure Models with Spanned or Unspanned Stochastic Volatility , 2014 .

[40]  V. E. Beneš New exact nonlinear filters with large Lie algebras , 1985 .

[41]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[42]  Chenxu Li Maximum-likelihood estimation for diffusion processes via closed-form density expansions , 2013, 1308.2764.

[43]  Whitney K. Newey,et al.  Maximum Likelihood Specification Testing and Conditional Moment Tests , 1985 .

[44]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[45]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[46]  Dennis Kristensen,et al.  ESTIMATION OF STOCHASTIC VOLATILITY MODELS BY NONPARAMETRIC FILTERING , 2010, Econometric Theory.

[47]  P. Collin‐Dufresne,et al.  Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility , 2001 .

[48]  Nicholas G. Polson,et al.  MCMC Methods for Financial Econometrics , 2002 .

[49]  Yacine Ait-Sahalia,et al.  Estimating Affine Multifactor Term Structure Models Using Closed-Form Likelihood Expansions , 2002 .

[50]  S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .

[51]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[52]  Chao Shi,et al.  Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models , 2014, Math. Oper. Res..

[53]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .