On Generalization and Acceleration of Randomized Projection Methods for Linear Feasibility Problems

Randomized Kaczmarz (RK), Motzkin Method (MM) and Sampling Kaczmarz Motzkin (SKM) algorithms are commonly used iterative techniques for solving linear system of inequalities (i.e., $Ax \leq b$). As linear systems of equations represents a modeling paradigm for solving many optimization problems, these randomized and iterative techniques are gaining popularity among researchers in different domains. In this work, we propose a Generalized Sampling Kaczamrz Motzkin (GSKM) method that unifies the iterative methods into a single framework. In addition to the general framework, we propose a Nesterov type acceleration scheme in the SKM method called as Probably Accelerated Sampling Kaczamrz Motzkin (PASKM). We prove the convergence theorems for both GSKM and PASKM algorithms in the L2 norm perspective with respect to the proposed sampling distribution. Furthermore, from the convergence theorem of GSKM algorithm, we find the convergence results of several well known algorithms like Kaczmarz method, Motzkin method and SKM algorithm. We perform thorough numerical experiments using both randomly generated and real life (classification with support vector machine and Netlib LP) test instances to demonstrate the efficiency of the proposed methods. We compare the proposed algorithms with SKM, Interior Point Method (IPM) and Active Set Method (ASM) in terms of computation time and solution quality. In majority of the problem instances, the proposed generalized and accelerated algorithms significantly outperform the state-of-the-art methods.

[1]  Yair Censor,et al.  Parallel application of block-iterative methods in medical imaging and radiation therapy , 1988, Math. Program..

[2]  Peter Richtárik,et al.  Randomized Iterative Methods for Linear Systems , 2015, SIAM J. Matrix Anal. Appl..

[3]  Peter Richtárik,et al.  Provably Accelerated Randomized Gossip Algorithms , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[5]  László A. Végh,et al.  A polynomial projection-type algorithm for linear programming , 2013, Oper. Res. Lett..

[6]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[7]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[8]  Javier Peña,et al.  Margins, Kernels and Non-linear Smoothed Perceptrons , 2014, ICML.

[9]  Yue M. Lu,et al.  Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[10]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[11]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[12]  Deanna Needell,et al.  Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm , 2013, Mathematical Programming.

[13]  Elizaveta Rebrova,et al.  On block Gaussian sketching for the Kaczmarz method , 2019, Numerical Algorithms.

[14]  Robert M. Gower,et al.  Randomized Quasi-Newton Updates Are Linearly Convergent Matrix Inversion Algorithms , 2016, SIAM J. Matrix Anal. Appl..

[15]  Sergei Chubanov,et al.  A polynomial projection algorithm for linear feasibility problems , 2015, Math. Program..

[16]  Mark W. Schmidt,et al.  Convergence Rates for Greedy Kaczmarz Algorithms, and Randomized Kaczmarz Rules Using the Orthogonality Graph , 2016, UAI.

[17]  Robert M. Gower,et al.  Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization , 2018, NeurIPS.

[18]  Peter Richtárik,et al.  Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse , 2016, 1612.06255.

[19]  Deanna Needell,et al.  Rows vs. Columns: Randomized Kaczmarz or Gauss-Seidel for Ridge Regression , 2015, 1507.05844.

[20]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[21]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[22]  Yin Tat Lee,et al.  Efficient Accelerated Coordinate Descent Methods and Faster Algorithms for Solving Linear Systems , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[23]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[24]  Zhong-Zhi Bai,et al.  On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems , 2018, Appl. Math. Lett..

[25]  Marcus A. Magnor,et al.  A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[26]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[27]  Klaus Truemper,et al.  Polynomial algorithms for a class of linear programs , 1981, Math. Program..

[28]  Deanna Needell,et al.  Block Kaczmarz Method with Inequalities , 2014, Journal of Mathematical Imaging and Vision.

[29]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[30]  Deanna Needell,et al.  Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods , 2015, SIAM J. Matrix Anal. Appl..

[31]  D. Needell Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.

[32]  Adrian S. Lewis,et al.  Randomized Methods for Linear Constraints: Convergence Rates and Conditioning , 2008, Math. Oper. Res..

[33]  Deanna Needell,et al.  Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.

[34]  Yonina C. Eldar,et al.  Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma , 2010, Numerical Algorithms.

[35]  Peter Richtárik,et al.  Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory , 2017, SIAM J. Matrix Anal. Appl..

[36]  Nikolaos M. Freris,et al.  Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..

[37]  Stefania Petra,et al.  Single projection Kaczmarz extended algorithms , 2015, Numerical Algorithms.

[38]  Zhi-Quan Luo,et al.  A linearly convergent doubly stochastic Gauss–Seidel algorithm for solving linear equations and a certain class of over-parameterized optimization problems , 2019, Math. Program..

[39]  Sergei Chubanov A strongly polynomial algorithm for linear systems having a binary solution , 2012, Math. Program..

[40]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[41]  Jamie Haddock,et al.  Greed Works: An Improved Analysis of Sampling Kaczmarz-Motkzin , 2019, ArXiv.

[42]  Peter Richtárik,et al.  Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods , 2017, Computational Optimization and Applications.

[43]  Md. Noor-E-Alam,et al.  Accelerated Sampling Kaczmarz Motzkin Algorithm for Linear Feasibility Problem , 2019 .

[44]  Peter Richtárik,et al.  SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization , 2015, ICML.

[45]  I-Cheng Yeh,et al.  The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients , 2009, Expert Syst. Appl..

[46]  Zhong-Zhi Bai,et al.  On Greedy Randomized Kaczmarz Method for Solving Large Sparse Linear Systems , 2018, SIAM J. Sci. Comput..

[47]  D. Needell,et al.  Randomized block Kaczmarz method with projection for solving least squares , 2014, 1403.4192.

[48]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[49]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[50]  Jesús A. De Loera,et al.  A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility , 2016, SIAM J. Sci. Comput..

[51]  Md. Noor-E-Alam,et al.  Generalized affine scaling algorithms for linear programming problems , 2018, Comput. Oper. Res..

[52]  Stephen J. Wright,et al.  An accelerated randomized Kaczmarz algorithm , 2013, Math. Comput..

[53]  Nikolaos V. Sahinidis,et al.  GPU computing with Kaczmarz's and other iterative algorithms for linear systems , 2010, Parallel Comput..

[54]  Jesús A. De Loera,et al.  On Chubanov's Method for Linear Programming , 2012, INFORMS J. Comput..

[55]  Javier Peña,et al.  Towards a deeper geometric, analytic and algorithmic understanding of margins , 2014, Optim. Methods Softw..

[56]  Ruggero Carli,et al.  Distributed estimation via iterative projections with application to power network monitoring , 2011, Autom..

[57]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[58]  Jan Telgen,et al.  On relaxation methods for systems of linear inequalities , 1982 .

[59]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.