Light types for polynomial time computation in lambda calculus
暂无分享,去创建一个
[1] Kazushige Terui,et al. A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.
[2] Peter Clote,et al. Feasible Mathematics II , 2011 .
[3] Ugo Dal Lago,et al. Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.
[4] Ugo Dal Lago. Context Semantics, Linear Logic and Computational Complexity , 2006, LICS.
[5] Andrea Asperti,et al. Intuitionistic Light Affine Logic , 2002, TOCL.
[6] Kazushige Terui,et al. Verification of Ptime Reducibility for system F Terms: Type Inference in Dual Light Affine Logic , 2007, Log. Methods Comput. Sci..
[7] Paolo Coppola,et al. Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.
[8] Gordon Plotkin,et al. Type Theory and Recursion Extended Abstract , 2003, LICS 2003.
[9] Jean-Yves Girard,et al. Light Linear Logic , 1998, Inf. Comput..
[10] Kazushige Terui,et al. Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.
[11] Patrick Baillot. Type inference for light affine logic via constraints on words , 2004, Theor. Comput. Sci..
[12] Michael Mendler,et al. The NASA STI Program Office provides , 2000 .
[13] Patrick Baillot. Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..
[14] Kazushige Terui. Light affine lambda calculus and polynomial time strong normalization , 2007, Arch. Math. Log..
[15] Krishnendu Chatterjee,et al. Algorithms for Omega-Regular Games with Imperfect Information , 2006, Log. Methods Comput. Sci..
[16] Paris C. Kanellakis,et al. On the expressive power of simply typed and let-polymorphic lambda calculi , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[17] Andrew Barber,et al. Dual Intuitionistic Linear Logic , 1996 .
[18] Patrick Baillot,et al. Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.
[19] Martin Hofmann,et al. Static prediction of heap space usage for first-order functional programs , 2003, POPL '03.
[20] F. Pfenning,et al. On a Modal λ-Calculus for S41 1This work is supported by NSF Grant CCR-9303383 and the Advanced Research Projects Agency under ARPA Order No. 8313. , 1995 .
[21] Daniel Leivant,et al. Calibrating computational feasibility by abstraction rank , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.
[22] Stephen A. Cook,et al. A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.
[23] Damiano Mazza. Linear logic and polynomial time , 2006, Math. Struct. Comput. Sci..
[24] D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .
[25] Andrea Asperti. Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).
[26] Kazushige Terui,et al. Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[27] Andrzej S. Murawski,et al. On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..
[28] Yves Lafont,et al. Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..
[29] Kazushige Terui. Light Affine Set Theory: A Naive Set Theory of Polynomial Time , 2004, Stud Logica.
[30] Martin Hofmann. Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..
[31] Martin Hofmann,et al. Quantitative Models and Implicit Complexity , 2005, FSTTCS.
[32] Kazushige Terui,et al. Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.
[33] Aleksy Schubert. The Complexity of beta-Reduction in Low Orders , 2001, TLCA.
[34] Valeria de Paiva,et al. On an Intuitionistic Modal Logic , 2000, Stud Logica.
[35] Masahito Hasegawa,et al. Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.
[36] Martin Hofmann. Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..
[37] Paolo Coppola,et al. Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.
[38] Olivier Laurent,et al. Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).