Light types for polynomial time computation in lambda calculus

We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial time: dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms (and not only on proof-nets): subject reduction is satisfied and a well-typed term admits a polynomial bound on the length of any of its beta reduction sequences. We also give a translation of LAL into DLAL and deduce from it that all polynomial time functions can be represented in DLAL.

[1]  Kazushige Terui,et al.  A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.

[2]  Peter Clote,et al.  Feasible Mathematics II , 2011 .

[3]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[4]  Ugo Dal Lago Context Semantics, Linear Logic and Computational Complexity , 2006, LICS.

[5]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[6]  Kazushige Terui,et al.  Verification of Ptime Reducibility for system F Terms: Type Inference in Dual Light Affine Logic , 2007, Log. Methods Comput. Sci..

[7]  Paolo Coppola,et al.  Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.

[8]  Gordon Plotkin,et al.  Type Theory and Recursion Extended Abstract , 2003, LICS 2003.

[9]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[10]  Kazushige Terui,et al.  Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.

[11]  Patrick Baillot Type inference for light affine logic via constraints on words , 2004, Theor. Comput. Sci..

[12]  Michael Mendler,et al.  The NASA STI Program Office provides , 2000 .

[13]  Patrick Baillot Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..

[14]  Kazushige Terui Light affine lambda calculus and polynomial time strong normalization , 2007, Arch. Math. Log..

[15]  Krishnendu Chatterjee,et al.  Algorithms for Omega-Regular Games with Imperfect Information , 2006, Log. Methods Comput. Sci..

[16]  Paris C. Kanellakis,et al.  On the expressive power of simply typed and let-polymorphic lambda calculi , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[17]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[18]  Patrick Baillot,et al.  Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.

[19]  Martin Hofmann,et al.  Static prediction of heap space usage for first-order functional programs , 2003, POPL '03.

[20]  F. Pfenning,et al.  On a Modal λ-Calculus for S41 1This work is supported by NSF Grant CCR-9303383 and the Advanced Research Projects Agency under ARPA Order No. 8313. , 1995 .

[21]  Daniel Leivant,et al.  Calibrating computational feasibility by abstraction rank , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[22]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[23]  Damiano Mazza Linear logic and polynomial time , 2006, Math. Struct. Comput. Sci..

[24]  D. Leivant Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .

[25]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[26]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[27]  Andrzej S. Murawski,et al.  On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..

[28]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[29]  Kazushige Terui Light Affine Set Theory: A Naive Set Theory of Polynomial Time , 2004, Stud Logica.

[30]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[31]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[32]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.

[33]  Aleksy Schubert The Complexity of beta-Reduction in Low Orders , 2001, TLCA.

[34]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[35]  Masahito Hasegawa,et al.  Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.

[36]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[37]  Paolo Coppola,et al.  Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.

[38]  Olivier Laurent,et al.  Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).