A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis
暂无分享,去创建一个
Kyle J. Minch | Nathan D Price | Shuyi Ma | Serdar Turkarslan | Nitin S Baliga | David J. Reiss | N. Baliga | N. Price | D. Sherman | S. Turkarslan | E. Peterson | T. Rustad | Shuyi Ma | R. Morrison | David J Reiss | David R Sherman | Tige R Rustad | Eliza J R Peterson | Kyle J Minch | Robert Morrison | Eliza J. R. Peterson | K. Minch
[1] Kerstin Kaufmann,et al. ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions , 2011, Plant Methods.
[2] Tige R. Rustad,et al. The Enduring Hypoxic Response of Mycobacterium tuberculosis , 2008, PloS one.
[3] Diogo M. Camacho,et al. Wisdom of crowds for robust gene network inference , 2012, Nature Methods.
[4] Adamandia Kapopoulou,et al. TubercuList--10 years after. , 2011, Tuberculosis.
[5] Kyle J. Minch,et al. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network , 2014, Genome Biology.
[6] J. Collins,et al. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.
[7] Martial Sankar,et al. POLYPHEMUS: R package for comparative analysis of RNA polymerase II ChIP-seq profiles by non-linear normalization , 2012, Nucleic acids research.
[8] Davide Heller,et al. STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..
[9] P. Park,et al. Design and analysis of ChIP-seq experiments for DNA-binding proteins , 2008, Nature Biotechnology.
[10] Feng Lin,et al. An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data , 2008, Bioinform..
[11] Nathan D. Price,et al. The DNA-binding network of Mycobacterium tuberculosis , 2015, Nature Communications.
[12] Philip L Felgner,et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome , 2010, Proceedings of the National Academy of Sciences.
[13] The Uniprot Consortium,et al. UniProt: a hub for protein information , 2014, Nucleic Acids Res..
[14] Nitin S. Baliga,et al. A high-resolution network model for global gene regulation in Mycobacterium tuberculosis , 2014, Nucleic acids research.
[15] Robert Grossman,et al. PeakRanger: A cloud-enabled peak caller for ChIP-seq data , 2011, BMC Bioinformatics.
[16] J. Zeitlinger,et al. A computational pipeline for comparative ChIP-seq analyses , 2011, Nature Protocols.
[17] Gordon K. Smyth,et al. limma: Linear Models for Microarray Data , 2005 .
[18] Olga T. Schubert,et al. Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis , 2014, Cell Reports.
[19] David L. Wheeler,et al. GenBank , 2015, Nucleic Acids Res..
[20] C. Ball,et al. TB database 2010: overview and update. , 2010, Tuberculosis.
[21] Steven J. M. Jones,et al. Circos: an information aesthetic for comparative genomics. , 2009, Genome research.
[22] J. Betts,et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling , 2002, Molecular microbiology.
[23] E. Rubin,et al. Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters , 2011, mBio.
[24] Susumu Goto,et al. KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..
[25] Sean R. Davis,et al. NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..
[26] Maulik Shukla,et al. Comparative genomic analysis at the PATRIC, a bioinformatic resource center. , 2014, Methods in molecular biology.
[27] Connie R. Jimenez,et al. Proteomic Profiling of Mycobacterium tuberculosis Identifies Nutrient-starvation-responsive Toxin–antitoxin Systems , 2013, Molecular & Cellular Proteomics.
[28] Kyle J. Minch,et al. Mycobacterium tuberculosis Growth following Aerobic Expression of the DosR Regulon , 2012, PloS one.
[29] W. Schofield. Overview and update. , 1987 .
[30] Kyle J. Minch,et al. Hypoxia: a window into Mycobacterium tuberculosis latency , 2009, Cellular microbiology.
[31] E. Rubin,et al. Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.
[32] Ruedi Aebersold,et al. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. , 2013, Cell host & microbe.
[33] Cole Trapnell,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.
[34] Thomas R. Ioerger,et al. High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.
[35] S. Zolla-Pazner,et al. Transcriptional Profiling of Mycobacterium tuberculosis Replicating Ex vivo in Blood from HIV- and HIV+ Subjects , 2014, PloS one.
[36] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[37] Ning Jiang,et al. Network portal: a database for storage, analysis and visualization of biological networks , 2013, Nucleic Acids Res..
[38] Yves Van de Peer,et al. The Mycobacterium tuberculosis regulatory network and hypoxia , 2013, Nature.
[39] Darren A. Natale,et al. The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.
[40] Rainer Breitling,et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis , 2006, Bioinform..