M-Theory and Topological Strings--I

The $R^2 F^{2g-2}$ terms of Type IIA strings on Calabi-Yau 3-folds, which are given by the corresponding topological string amplitudes (a worldsheet instanton sum for all genera), are shown to have a simple M-theory interpretation. In particular, a Schwinger one-loop computation in M-theory with wrapped M2 branes and Kaluza-Klein modes going around the loop reproduces the all genus string contributions from constant maps and worldsheet instanton corrections. In the simplest case of an isolated M2 brane with the topology of the sphere, we obtain the contributions of small worldsheet instantons (sphere ``bubblings'') which extends the results known or conjectured for low genera. Surprisingly, the 't Hooft expansion of large $N$ Chern-Simons theory on $S^3$ can also be used in a novel way to compute these gravitational terms at least in special cases.

[1]  R. Gopakumar,et al.  M-Theory and Topological Strings--II , 1998, hep-th/9812127.

[2]  R. Pandharipande,et al.  Hodge integrals and Gromov-Witten theory , 1998, math/9810173.

[3]  G. Moore,et al.  Counting higher genus curves in a Calabi-Yau manifold , 1998, hep-th/9808131.

[4]  P. Vanhove,et al.  ONE LOOP IN ELEVEN DIMENSIONS , 1997, hep-th/9706175.

[5]  A. Lawrence,et al.  Instanton sums and five-dimensional gauge theories , 1997, hep-th/9706025.

[6]  M. O’Loughlin Chern-Simons from Dirichlet 2-brane Instantons , 1996, hep-th/9601179.

[7]  C. Vafa,et al.  D-branes and topological field theories , 1995, hep-th/9511222.

[8]  I. Antoniadis,et al.  N = 2 type II-heterotic duality and higher-derivative F-terms , 1995 .

[9]  J. A. Harvey,et al.  Algebras, BPS states, and strings , 1995, hep-th/9510182.

[10]  C. Vafa,et al.  c = 1 string as the topological theory of the conifold , 1995, hep-th/9506122.

[11]  H. Ooguri,et al.  All loop N = 2 string amplitudes , 1995, hep-th/9505183.

[12]  E. Witten String theory dynamics in various dimensions , 1995, hep-th/9503124.

[13]  P. Townsend The eleven-dimensional supermembrane revisited , 1995, hep-th/9501068.

[14]  C. Vafa,et al.  N = 4 topological strings , 1994, hep-th/9407190.

[15]  H. Ooguri,et al.  Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes , 1993, hep-th/9309140.

[16]  H. Ooguri,et al.  Holomorphic anomalies in topological field theories , 1993 .

[17]  I. Antoniadis,et al.  Topological amplitudes in string theory , 1993, hep-th/9307158.

[18]  Periwal Topological closed-string interpretation of Chern-Simons theory. , 1993, Physical review letters.

[19]  E. Witten Chern-Simons gauge theory as a string theory , 1992, hep-th/9207094.

[20]  C. Vafa,et al.  A CRITICAL MATRIX MODEL AT c=1 , 1991 .

[21]  Edward Witten,et al.  Communications in Mathematical Physics © Springer-Verlag 1989 Quantum Field Theory and the Jones Polynomial , 2022 .