3D Micro‐ and Nanostructures via Interference Lithography

Interference lithography (IL) holds the promise of fabricating large-area, defect-free 3D structures on the submicrometer scale both rapidly and cheaply. A stationary spatial variation of intensity is created by the interference of two or more beams of light. The pattern that emerges out of the intensity distribution is transferred to a light sensitive medium, such as a photoresist, and after development yields a 3D bicontinuous photoresist/air structure. Importantly, by a proper choice of beam parameters one can control the geometrical elements and volume fraction of the structures. This article provides an overview of the fabrication of 3D structures via IL (e.g., the formation of interference patterns, their dependence on beam parameters and several requirements for the photoresist) and highlights some of our recent efforts in the applications of these 3D structures in photonic crystals, phononic crystals and as microframes, and for the synthesis of highly non spherical polymer particles. Our discussion concludes with perspectives on the future directions in which this technique could be pursued.

[1]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[2]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[3]  Hiroshi Ito,et al.  Positive/Negative Mid Uv Resists With High Thermal Stability , 1987, Advanced Lithography.

[4]  G. Whitesides,et al.  Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask , 1998 .

[5]  Tomomasa Sato,et al.  Mechanical assembly of three-dimensional microstructures from fine particles , 1996, Adv. Robotics.

[6]  L. Francis,et al.  In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure , 2001 .

[7]  Raymond C Rumpf,et al.  Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[9]  Younan Xia,et al.  Fabrication and Characterization of Chirped 3D Photonic Crystals , 2000 .

[10]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[11]  W. Hu,et al.  Three-dimensional ordered patterns by light interference. , 1995, Optics letters.

[12]  C. M. Jefferson,et al.  Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. , 2000, Applied optics.

[13]  C. López,et al.  Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO(2) Spheres by Sintering. , 1998, Advanced materials.

[14]  A. Turberfield,et al.  Photonic Crystals Made by Holographic Lithography , 2001 .

[15]  Shu Yang,et al.  Creating Three‐Dimensional Polymeric Microstructures by Multi‐Beam Interference Lithography , 2005 .

[16]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[17]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[18]  Peter Vettiger,et al.  High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS , 1998 .

[19]  H. Eisele,et al.  Erratum: “Atomically resolved structure of InAs quantum dots” [Appl. Phys. Lett. 78, 2309 (2001)] , 2007 .

[20]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[21]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[22]  Juan J. de Pablo,et al.  Aqueous-based photoresist drying using supercritical carbon dioxide to prevent pattern collapse , 2000 .

[23]  Zhengyou Liu,et al.  Negative refraction of acoustic waves in two-dimensional phononic crystals , 2004 .

[24]  Martin Wegener,et al.  New Route to Three‐Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates , 2006 .

[25]  Seung-Man Yang,et al.  Patterned polymer photonic crystals using soft lithography and holographic lithography , 2005 .

[26]  E. H. Linfoot Principles of Optics , 1961 .

[27]  Dinsmore,et al.  Phase diagrams of nearly-hard-sphere binary colloids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Jun Hyuk Moon,et al.  Fabricating three‐dimensional polymeric photonic structures by multi‐beam interference lithography , 2006 .

[29]  Baoli Yao,et al.  Structuring by multi-beam interference using symmetric pyramids. , 2006, Optics express.

[30]  R. Martínez-Sala,et al.  Sound attenuation by sculpture , 1995, Nature.

[31]  J. Lewis,et al.  Microperiodic structures: Direct writing of three-dimensional webs , 2004, Nature.

[32]  Shu Yang,et al.  Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures , 2004 .

[33]  Kurt Busch,et al.  Shrinkage Precompensation of Holographic Three‐Dimensional Photonic‐Crystal Templates , 2006 .

[34]  C. López,et al.  Nanorobotic Manipulation of Microspheres for On‐Chip Diamond Architectures , 2002 .

[35]  P. Renaud,et al.  SU-8 nanocomposite photoresist with low stress properties for microfabrication applications , 2006 .

[36]  Jane M. Shaw,et al.  Micromachining applications of a high resolution ultrathick photoresist , 1995 .

[37]  N. J. Chou,et al.  Mechanism of oxygen plasma etching of polydimethyl siloxane films , 1985 .

[38]  Kurt Busch,et al.  Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations , 2003 .

[39]  E. Thomas,et al.  Simultaneous complete elastic and electromagnetic band gaps in periodic structures , 2006 .

[40]  M. Yokoyama,et al.  New‐type xerographic multiduplication using organopolysilane‐based memory photoreceptor drawn by ultraviolet image exposure , 1989 .

[41]  Saulius Juodkazis,et al.  Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. , 2006, Optics express.

[42]  Martin Maldovan,et al.  Triply periodic bicontinuous structures through interference lithography: a level-set approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[44]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[45]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[46]  F. Boey,et al.  Cationic UV cure kinetics for multifunctional epoxies , 2002 .

[47]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[48]  E. Thomas,et al.  Hypersonic phononic crystals. , 2005, Physical review letters.

[49]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[50]  Saulius Juodkazis,et al.  Reduction of capillary force for high-aspect ratio nanofabrication , 2005 .

[51]  Vladimir V Tsukruk,et al.  Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. , 2006, Nano letters.

[52]  Nelson Felix,et al.  High‐Resolution Patterning of Molecular Glasses Using Supercritical Carbon Dioxide , 2006 .

[53]  E. Thomas,et al.  Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries , 2001 .

[54]  Anthony G. Evans,et al.  Lightweight Materials and Structures , 2001 .

[55]  F. Arnaud d'Avitaya,et al.  Influence of liquid surface tension on stiction of SOI MEMS , 2004 .

[56]  R. Dammel Diazonaphthoquinone-based resists , 1993 .

[57]  M. Ashby,et al.  FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES , 2001 .

[58]  Orlin D. Velev,et al.  In situ assembly of colloidal particles into miniaturized biosensors , 1999 .

[59]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[60]  A. S. Holmes,et al.  SU8 resist plasma etching and its optimisation , 2003, DTIP 2003.

[61]  Martin Maldovan,et al.  Diamond-structured photonic crystals , 2004, Nature materials.

[62]  P. Herman,et al.  One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates. , 2006, Optics express.

[63]  C. Willson,et al.  Plasma-Developable Photoresist Systems Based on Chemical Amplification , 1991 .

[64]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[65]  Chaos comes under control , 2005 .

[66]  Michael F. Ashby,et al.  Multifunctionality of cellular metal systems , 1998 .

[67]  Shanhui Fan,et al.  Nonlinear photonic crystal microdevices for optical integration. , 2003, Optics letters.

[68]  Andrew S. Holmes,et al.  SU8 resist plasma etching and its optimisation , 2004 .

[69]  Steffen,et al.  Acoustic excitations in suspensions of soft colloids , 2000, Physical review letters.

[70]  John A Rogers,et al.  Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  E. Thomas,et al.  3D Polymer Microframes That Exploit Length‐Scale‐Dependent Mechanical Behavior , 2006 .

[72]  Edwin L. Thomas,et al.  Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology , 1986 .

[73]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[74]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[75]  Shanhui Fan,et al.  Erratum: Photonic crystals: putting a new twist on light , 1997, Nature.

[76]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[77]  Martin Maldovan,et al.  Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups , 2003, Nature materials.

[78]  Ronald P. Andres,et al.  Fabrication of two‐dimensional arrays of nanometer‐size clusters with the atomic force microscope , 1995 .

[79]  Kushwaha,et al.  Kushwaha et al. reply. , 1995, Physical review letters.

[80]  Elton Graugnard,et al.  Infiltration and Inversion of Holographically Defined Polymer Photonic Crystal Templates by Atomic Layer Deposition , 2006 .

[81]  E. Thomas,et al.  Shape control of multivalent 3D colloidal particles via interference lithography. , 2007, Nano letters.

[82]  L Z Cai,et al.  All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. , 2002, Optics letters.

[83]  Mischa Megens,et al.  Creating Periodic Three-Dimensional Structures by Multibeam Interference of Visible Laser , 2002 .