Equality is a Jump

Abstract We define a notion of degree of unsolvability for subsets of R n (where R is a real closed Archimedean field) and prove that, in contrast to Type 2 computability, the presence of exact equality in the BSS model forces exactly one jump of the unsolvability degree of decidable sets.

[1]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[2]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[3]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[4]  Sebastiano Vigna,et al.  delta-Uniform BSS Machines , 1998, J. Complex..

[5]  Sebastiano Vigna,et al.  The Turing closure of an Archimedean field , 2000, Theor. Comput. Sci..

[6]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[7]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[8]  B. M. Fulk MATH , 1992 .

[9]  Anand Pillay,et al.  Model theory of fields , 1996 .

[10]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[11]  P. Boldi,et al.  δ-uniform BSS Machines , 1998 .

[12]  R. Soare Recursive theory and Dedekind cuts , 1969 .

[13]  P. Odifreddi The theory of functions and sets of natural numbers , 1989 .

[14]  Joseph R. Shoenfield,et al.  Degrees of unsolvability , 1959, North-Holland mathematics studies.

[15]  P. Odifreddi Classical recursion theory , 1989 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[18]  R. Tennant Algebra , 1941, Nature.

[19]  Jens Blanck,et al.  Selected Papers from the 4th International Workshop on Computability and Complexity in Analysis , 2000 .

[20]  Ker-I Ko,et al.  Reducibilities on Real Numbers , 1984, Theor. Comput. Sci..

[21]  Klaus Weihrauch,et al.  Type 2 Recursion Theory , 1985, Theor. Comput. Sci..