Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs)

[1]  M. Morgante,et al.  Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes , 2002, Nature Genetics.

[2]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[3]  D. Tautz,et al.  Simple sequences. , 1994, Current opinion in genetics & development.

[4]  E. E. Regulski,et al.  Isolation and characterization of dinucleotide repeat microsatellites in Drosophila ananassae. , 2004, Genetical research.

[5]  J. Burke,et al.  EST-SSRs as a resource for population genetic analyses , 2007, Heredity.

[6]  G. Dalgliesh,et al.  Expansion of GAA trinucleotide repeats in mammals. , 2006, Genomics.

[7]  Z. Abdeen,et al.  Phlebotomine Sand Flies (Diptera: Psychodidae) of the Palestinian West Bank: Potential Vectors of Leishmaniasis , 2003, Journal of medical entomology.

[8]  L. Singh,et al.  Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions , 2003, Genome Biology.

[9]  Yoo-Jeong Han,et al.  Naturally Extended CT · AG Repeats Increase H-DNA Structures and Promoter Activity in the Smooth Muscle Myosin Light Chain Kinase Gene , 2007, Molecular and Cellular Biology.

[10]  L. Lipovich,et al.  Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. , 2001, Genome research.

[11]  A. Aransay,et al.  Isolation (with enrichment) and characterization of trinucleotide microsatellites from Phlebotomus perniciosus, a vector of Leishmania infantum , 2001 .

[12]  H. Korpelainen,et al.  Microsatellite marker identification using genome screening and restriction-ligation. , 2007, BioTechniques.

[13]  Dorrie Main,et al.  Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs , 2005, Functional & Integrative Genomics.

[14]  Zhenlin Ju,et al.  An in silico Mining for Simple Sequence Repeats from Expressed Sequence Tags of Zebrafish, Medaka, Fundulus, and Xiphophorus , 2005, Silico Biol..

[15]  J. Charlwood,et al.  Population structure in the malaria vector, Anopheles arabiensis Patton, in East Africa , 1999, Heredity.

[16]  Z. Abdeen,et al.  Isolation and characterization of microsatellite loci in the sand fly Phlebotomus papatasi (Diptera: Psychodidae) , 2006 .

[17]  R. Durrett,et al.  Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. , 2003, Molecular biology and evolution.

[18]  G. Schönian,et al.  Molecular epidemiology and population genetics in Leishmania , 2001, Medical Microbiology and Immunology.

[19]  S. Sawalha,et al.  Population structure and geographical subdivision of the Leishmania major vector Phlebotomus papatasi as revealed by microsatellite variation , 2009, Medical and veterinary entomology.

[20]  O. Hamarsheh Distribution of Leishmania major zymodemes in relation to populations of Phlebotomus papatasi sand flies , 2011, Parasites & Vectors.

[21]  G. Simo,et al.  Trypanosoma brucei s.l.: Microsatellite markers revealed high level of multiple genotypes in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus of Cameroon. , 2011, Experimental parasitology.

[22]  J. Mcneil,et al.  Word frequency analysis reveals enrichment of dinucleotide repeats on the human X chromosome and [GATA]n in the X escape region. , 2006, Genome research.

[23]  B. Li,et al.  Analysis of microsatellites derived from bee Ests. , 2004, Yi chuan xue bao = Acta genetica Sinica.

[24]  G. Schönian,et al.  Genetic polymorphism of Algerian Leishmania infantum strains revealed by multilocus microsatellite analysis. , 2008, Microbes and infection.

[25]  Angelika Merkel,et al.  Detecting Microsatellites in Genome Data: Variance in Definitions and Bioinformatic Approaches Cause Systematic Bias , 2008, Evolutionary bioinformatics online.

[26]  Shengli Cai,et al.  Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. , 2009, Biological research.

[27]  R. Killick-Kendrick Phlebotomine vectors of the leishmaniases: a review , 1990, Medical and veterinary entomology.

[28]  Z. Abdeen,et al.  Population genetics of Leishmania infantum in Israel and the Palestinian Authority through microsatellite analysis. , 2009, Microbes and infection.

[29]  K. Linthicum,et al.  Microsatellite polymorphism in Anopheles maculatus, a malaria vector in Thailand. , 1996, The American journal of tropical medicine and hygiene.

[30]  A. Mcintosh,et al.  Application of inter-simple sequence repeats to insect cell lines: Identification at the clonal andtissue-specific level , 2003, In Vitro Cellular & Developmental Biology - Animal.

[31]  V. Sgaramella,et al.  Frequency and coverage of trinucleotide repeats in eukaryotes. , 2003, Gene.

[32]  D. Severson,et al.  Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti , 2009, BMC Genomics.

[33]  D. Choi,et al.  Exploitation of pepper EST–SSRs and an SSR-based linkage map , 2006, Theoretical and Applied Genetics.

[34]  C. Atkinson,et al.  Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. , 1998, Molecular ecology.

[35]  Z. Abdeen,et al.  Molecular markers for Phlebotomus papatasi (Diptera: Psychodidae) and their usefulness for population genetic analysis. , 2009, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[36]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[37]  C. Schlötterer Evolutionary dynamics of microsatellite DNA , 2000, Chromosoma.

[38]  P. Bastien,et al.  Population structure of Tunisian Leishmania infantum and evidence for the existence of hybrids and gene flow between genetically different populations. , 2009, International journal for parasitology.

[39]  Vineet K. Sharma,et al.  Abundance of dinucleotide repeats and gene expression are inversely correlated: a role for gene function in addition to intron length. , 2007, Physiological genomics.

[40]  C. Schlötterer,et al.  Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. , 2000, Genetics.

[41]  Zhanjiang Liu,et al.  Bioinformatic Mining of Type I Microsatellites from Expressed Sequence Tags of Channel Catfish (Ictalurus punctatus) , 2004, Marine Biotechnology.

[42]  S. Behura,et al.  Molecular marker systems in insects: current trends and future avenues , 2006, Molecular ecology.

[43]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[44]  R. Huey,et al.  Introduction history of Drosophila subobscura in the New World: a microsatellite‐based survey using ABC methods , 2007, Molecular ecology.

[45]  B. Li,et al.  Analysis on Frequency and Density of Microsatellites in Coding Sequences of Several Eukaryotic Genomes , 2004, Genomics, proteomics & bioinformatics.

[46]  S. Warren,et al.  Trinucleotide repeat expansion and human disease. , 1995, Annual review of genetics.

[47]  A. Malaspina,et al.  Characterization of trinucleotide- and tandem repeat-containing transcripts obtained from human spinal cord cDNA library by high-density filter hybridization. , 2000, DNA and cell biology.

[48]  C. Schlötterer,et al.  Drosophila virilis has long and highly polymorphic microsatellites. , 2000, Molecular biology and evolution.