Elevated miR-615-3p expression predicts adverse clinical outcome and promotes proliferation and migration of prostate cancer cells.

[1]  H. G. van der Poel,et al.  Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. , 2019, European urology.

[2]  Hong Jiang,et al.  miR-615 Inhibits Prostate Cancer Cell Proliferation and Invasion by Directly Targeting Cyclin D2. , 2019, Oncology research.

[3]  K. Brasso,et al.  Predictive value of combined analysis of pro‐NPY and ERG in localized prostate cancer , 2018, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[4]  K. D. Sørensen,et al.  Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[5]  Jiansheng Wang,et al.  miR-615-3p promotes proliferation and migration and inhibits apoptosis through its potential target CELF2 in gastric cancer. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[6]  Hui-Yun Wang,et al.  Identification of microRNA-615-3p as a novel tumor suppressor in non-small cell lung cancer. , 2017, Oncology letters.

[7]  K. D. Sørensen,et al.  The Potential of MicroRNAs as Prostate Cancer Biomarkers. , 2016, European urology.

[8]  F. Slack,et al.  OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. , 2016, Cancer research.

[9]  Xiao-yu Wu,et al.  miR-615-5p prevents proliferation and migration through negatively regulating serine hydromethyltransferase 2 (SHMT2) in hepatocellular carcinoma , 2016, Tumor Biology.

[10]  K. D. Sørensen,et al.  Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling , 2016, Oncotarget.

[11]  Steven J. M. Jones,et al.  The Molecular Taxonomy of Primary Prostate Cancer , 2015, Cell.

[12]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[13]  G. Calin,et al.  MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients , 2015, British Journal of Cancer.

[14]  Hui Liu,et al.  Identification and validation of reference genes for the detection of serum microRNAs by reverse transcription-quantitative polymerase chain reaction in patients with bladder cancer. , 2015, Molecular medicine reports.

[15]  Won Tae Kim,et al.  Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers , 2015, International neurourology journal.

[16]  K. Mimori,et al.  miR-615-3p expression level in bone marrow is associated with tumor recurrence in hepatocellular carcinoma. , 2015, Molecular and clinical oncology.

[17]  J. Ramalho-Carvalho,et al.  MicroRNA-375 plays a dual role in prostate carcinogenesis , 2015, Clinical Epigenetics.

[18]  M. Erlacher,et al.  How cell death shapes cancer , 2015, Cell Death and Disease.

[19]  Xiaowei Wang,et al.  miRDB: an online resource for microRNA target prediction and functional annotations , 2014, Nucleic Acids Res..

[20]  T. Ørntoft,et al.  Functional Screening Identifies miRNAs Influencing Apoptosis and Proliferation in Colorectal Cancer , 2014, PloS one.

[21]  Y. Kondo,et al.  miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma , 2014, Oncogene.

[22]  G. Ribas,et al.  High stability of microRNAs in tissue samples of compromised quality , 2013, Virchows Archiv.

[23]  K. D. Sørensen,et al.  DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[25]  Rutao Cui,et al.  Apoptosis drives cancer cells proliferate and metastasize , 2013, Journal of cellular and molecular medicine.

[26]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[27]  F. O'Kelly,et al.  MicroRNAs as putative mediators of treatment response in prostate cancer , 2012, Nature Reviews Urology.

[28]  John H. White,et al.  Ligand-dependent Corepressor (LCoR) Recruitment by Krüppel-like Factor 6 (KLF6) Regulates Expression of the Cyclin-dependent Kinase Inhibitor CDKN1A Gene* , 2012, The Journal of Biological Chemistry.

[29]  M. Cooperberg,et al.  The CAPRA‐S score , 2011, Cancer.

[30]  H. Mukhtar,et al.  Ligand-dependent Corepressor Acts as a Novel Androgen Receptor Corepressor, Inhibits Prostate Cancer Growth, and Is Functionally Inactivated by the Src Protein Kinase* , 2011, The Journal of Biological Chemistry.

[31]  Zong-fang Li,et al.  miR-615-3p promotes the phagocytic capacity of splenic macrophages by targeting ligand-dependent nuclear receptor corepressor in cirrhosis-related portal hypertension , 2011, Experimental biology and medicine.

[32]  Antonio Alcaraz,et al.  MicroRNA in prostate, bladder, and kidney cancer: a systematic review. , 2011, European urology.

[33]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[34]  M. Ittmann,et al.  The function of microRNAs, small but potent molecules, in human prostate cancer , 2010, Prostate Cancer and Prostatic Diseases.

[35]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[36]  Peter J. Woolf,et al.  GAGE: generally applicable gene set enrichment for pathway analysis , 2009, BMC Bioinformatics.

[37]  Mircea Ivan,et al.  MicroRNA regulation of DNA repair gene expression in hypoxic stress. , 2009, Cancer research.

[38]  Michel Bolla,et al.  [EAU guidelines on prostate cancer]. , 2009, Actas urologicas espanolas.

[39]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[40]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[41]  James A Hanley,et al.  20-year outcomes following conservative management of clinically localized prostate cancer. , 2005, JAMA.

[42]  P. Grambsch,et al.  Modeling Survival Data: Extending the Cox Model , 2000 .

[43]  O. Cussenot,et al.  Recurrent cytogenetic alterations of prostate carcinoma and amplification of c‐myc or epidermal growth factor receptor in subclones of immortalized pnt1 human prostate epithelial cell line , 1995, International journal of cancer.

[44]  Xiaoling Du,et al.  CDX2 inhibits pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p , 2015, Tumor Biology.

[45]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[46]  C. Croce,et al.  MicroRNAs in cancer. , 2014, Annual review of pathology.

[47]  Thomas Wiegel,et al.  Guidelines on Prostate Cancer , 2013 .

[48]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[49]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[50]  V. Kosma,et al.  Apoptosis in breast cancer as related to histopathological characteristics and prognosis. , 1994, European journal of cancer.