Hierarchies in φ‐spaces and applications

We establish some results on the Borel and difference hierarchies in φ-spaces. Such spaces are the topological counterpart of the algebraic directed-complete partial orderings. E.g., we prove analogs of the Hausdorff Theorem relating the difference and Borel hierarchies and of the Lavrentyev Theorem on the non-collapse of the difference hierarchy. Some of our results generalize results of A. Tang for the space Pω. We also sketch some older applications of these hierarchies and present a new application to the question of characterizing the ω-ary Boolean operations generating a given level of the Wadge hierarchy from the open sets. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[2]  Yuri Leonidovich Ershov,et al.  Theory of Domains and Nearby (Invited Paper) , 1993, Formal Methods in Programming and Their Applications.

[3]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[4]  V. L. Selivanov Index sets in the hyperarithmetical hierarchy , 1984 .

[5]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[6]  L. Kantorovitch,et al.  Memoir on the Analytical Operations and Projective Sets (II) , 1932 .

[7]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[8]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[9]  V. L. Selivanov,et al.  Difference Hierarchy in ϕ-Spaces , 2004 .

[10]  A. Tang,et al.  Wadge reducibility and Hausdorff difference hierarchy in Pω , 1981 .

[11]  Yuri L. Ershov,et al.  Theory of Numberings , 1999, Handbook of Computability Theory.

[12]  Ludwig Staiger,et al.  Hierarchies of Recursive omega-languages , 1986, J. Inf. Process. Cybern..

[13]  V. L. Selivanov Some remarks about classes of recursively enumerable sets , 1978 .

[14]  J. V. Tucker,et al.  Effective algebras , 1995, Logic in Computer Science.

[15]  Dieter Spreen,et al.  On effective topological spaces , 1998, Journal of Symbolic Logic.

[16]  Victor L. Selivanov,et al.  Wadge degrees of ω-languages of deterministic Turing machines , 2003 .

[17]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[18]  A. Kechris Classical descriptive set theory , 1987 .

[19]  Y. Ershov On a hierarchy of sets, II , 1968 .

[20]  A. Tang Chain Properties in P omega , 1979, Theor. Comput. Sci..

[21]  Yu. L. Ershov,et al.  The theory of A-spaces , 1973 .

[22]  William W. Wadge,et al.  Degrees of complexity of subsets of the baire space , 1972 .

[23]  Y. Moschovakis Descriptive Set Theory , 1980 .