Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells.

We present an indium-free transparent conducting composite electrode composed of silver nanowires (AgNWs) and ZnO bilayers. The AgNWs form a random percolating network embedded between the ZnO layers. The unique structural features of our ZnO/AgNW/ZnO multilayered composite allow for a novel transparent conducting electrode with unprecedented excellent thermal stability (∼375 °C), adhesiveness, and flexibility as well as high electrical conductivity (∼8.0 Ω/sq) and good optical transparency (>91% at 550 nm). Cu(In,Ga)(S,Se)₂ (CIGSSe) thin film solar cells incorporating this composite electrode exhibited a 20% increase of the power conversion efficiency compared to a conventional sputtered indium tin oxide-based CIGSSe solar cell. The ZnO/AgNW/ZnO composite structure enables effective light transmission and current collection as well as a reduced leakage current, all of which lead to better cell performance.

[1]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[2]  Xun Yu,et al.  High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes , 2011, Nanoscale research letters.

[3]  Ikerne Etxebarria,et al.  Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes , 2012 .

[4]  P. Charbonneau,et al.  The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. , 2012, Nanoscale.

[5]  Gunuk Wang,et al.  Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure , 2010 .

[6]  J. Coleman,et al.  Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. , 2011, Small.

[7]  C. Brabec,et al.  High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode , 2012 .

[8]  G. Haacke New figure of merit for transparent conductors , 1976 .

[9]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[10]  S. K. Deb Thin-film solar cells: An overview , 1996 .

[11]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[12]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[13]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[14]  Peter Peumans,et al.  Smooth Nanowire/Polymer Composite Transparent Electrodes , 2011, Advanced materials.

[15]  Hui Wu,et al.  Passivation coating on electrospun copper nanofibers for stable transparent electrodes. , 2012, ACS nano.

[16]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[17]  Chih-Ming Wang,et al.  Transparence and electrical properties of ZnO-based multilayer electrode , 2009 .

[18]  Frederik S. F. Morgenstern,et al.  Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells , 2011 .

[19]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[20]  Paul M. Zavracky,et al.  Transparent heat‐mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation , 1974 .

[21]  B. Sammakia,et al.  Bending Fatigue Study of Sputtered ITO on Flexible Substrate , 2011, Journal of Display Technology.

[22]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[23]  Han‐Ki Kim,et al.  Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing , 2011 .

[24]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[25]  E. Fortunato,et al.  Effect of different dopant elements on the properties of ZnO thin films , 2002 .

[26]  Jow-Lay Huang,et al.  High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature , 2006 .

[27]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[28]  Benjamin J Wiley,et al.  The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films , 2010, Advanced materials.

[29]  J. Park,et al.  ITO-free inverted polymer solar cells using a GZO cathode modified by ZnO , 2011 .

[30]  Yi Cui,et al.  Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode , 2008 .

[31]  K. Chou,et al.  Tailoring of silver wires and their performance as transparent conductive coatings , 2010, Nanotechnology.

[32]  N. D. Theodore,et al.  Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer , 2008 .

[33]  Shin-Yuan Lin,et al.  ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode , 2006 .

[34]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[35]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[36]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[37]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[38]  J. Lagemaat,et al.  Replacement of Transparent Conductive Oxides by Single-Wall Carbon Nanotubes in Cu(In,Ga)Se2-Based Solar Cells , 2007 .

[39]  Sang-Ho Kim,et al.  Effects of TiO2 shells on optical and thermal properties of silver nanowires , 2012 .

[40]  Karsten von Maydell,et al.  ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes , 2012 .

[41]  Chongwu Zhou,et al.  Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique , 2010 .